iced_widget/pane_grid/
state.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
//! The state of a [`PaneGrid`].
//!
//! [`PaneGrid`]: super::PaneGrid
use crate::core::{Point, Size};
use crate::pane_grid::{
    Axis, Configuration, Direction, Edge, Node, Pane, Region, Split, Target,
};

use std::borrow::Cow;
use std::collections::BTreeMap;

/// The state of a [`PaneGrid`].
///
/// It keeps track of the state of each [`Pane`] and the position of each
/// [`Split`].
///
/// The [`State`] needs to own any mutable contents a [`Pane`] may need. This is
/// why this struct is generic over the type `T`. Values of this type are
/// provided to the view function of [`PaneGrid::new`] for displaying each
/// [`Pane`].
///
/// [`PaneGrid`]: super::PaneGrid
/// [`PaneGrid::new`]: super::PaneGrid::new
#[derive(Debug, Clone)]
pub struct State<T> {
    /// The panes of the [`PaneGrid`].
    ///
    /// [`PaneGrid`]: super::PaneGrid
    pub panes: BTreeMap<Pane, T>,

    /// The internal state of the [`PaneGrid`].
    ///
    /// [`PaneGrid`]: super::PaneGrid
    pub internal: Internal,
}

impl<T> State<T> {
    /// Creates a new [`State`], initializing the first pane with the provided
    /// state.
    ///
    /// Alongside the [`State`], it returns the first [`Pane`] identifier.
    pub fn new(first_pane_state: T) -> (Self, Pane) {
        (
            Self::with_configuration(Configuration::Pane(first_pane_state)),
            Pane(0),
        )
    }

    /// Creates a new [`State`] with the given [`Configuration`].
    pub fn with_configuration(config: impl Into<Configuration<T>>) -> Self {
        let mut panes = BTreeMap::default();

        let internal =
            Internal::from_configuration(&mut panes, config.into(), 0);

        State { panes, internal }
    }

    /// Returns the total amount of panes in the [`State`].
    pub fn len(&self) -> usize {
        self.panes.len()
    }

    /// Returns `true` if the amount of panes in the [`State`] is 0.
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Returns the internal state of the given [`Pane`], if it exists.
    pub fn get(&self, pane: Pane) -> Option<&T> {
        self.panes.get(&pane)
    }

    /// Returns the internal state of the given [`Pane`] with mutability, if it
    /// exists.
    pub fn get_mut(&mut self, pane: Pane) -> Option<&mut T> {
        self.panes.get_mut(&pane)
    }

    /// Returns an iterator over all the panes of the [`State`], alongside its
    /// internal state.
    pub fn iter(&self) -> impl Iterator<Item = (&Pane, &T)> {
        self.panes.iter()
    }

    /// Returns a mutable iterator over all the panes of the [`State`],
    /// alongside its internal state.
    pub fn iter_mut(&mut self) -> impl Iterator<Item = (&Pane, &mut T)> {
        self.panes.iter_mut()
    }

    /// Returns the layout of the [`State`].
    pub fn layout(&self) -> &Node {
        &self.internal.layout
    }

    /// Returns the adjacent [`Pane`] of another [`Pane`] in the given
    /// direction, if there is one.
    pub fn adjacent(&self, pane: Pane, direction: Direction) -> Option<Pane> {
        let regions = self
            .internal
            .layout
            .pane_regions(0.0, Size::new(4096.0, 4096.0));

        let current_region = regions.get(&pane)?;

        let target = match direction {
            Direction::Left => {
                Point::new(current_region.x - 1.0, current_region.y + 1.0)
            }
            Direction::Right => Point::new(
                current_region.x + current_region.width + 1.0,
                current_region.y + 1.0,
            ),
            Direction::Up => {
                Point::new(current_region.x + 1.0, current_region.y - 1.0)
            }
            Direction::Down => Point::new(
                current_region.x + 1.0,
                current_region.y + current_region.height + 1.0,
            ),
        };

        let mut colliding_regions =
            regions.iter().filter(|(_, region)| region.contains(target));

        let (pane, _) = colliding_regions.next()?;

        Some(*pane)
    }

    /// Splits the given [`Pane`] into two in the given [`Axis`] and
    /// initializing the new [`Pane`] with the provided internal state.
    pub fn split(
        &mut self,
        axis: Axis,
        pane: Pane,
        state: T,
    ) -> Option<(Pane, Split)> {
        self.split_node(axis, Some(pane), state, false)
    }

    /// Split a target [`Pane`] with a given [`Pane`] on a given [`Region`].
    ///
    /// Panes will be swapped by default for [`Region::Center`].
    pub fn split_with(&mut self, target: Pane, pane: Pane, region: Region) {
        match region {
            Region::Center => self.swap(pane, target),
            Region::Edge(edge) => match edge {
                Edge::Top => {
                    self.split_and_swap(Axis::Horizontal, target, pane, true);
                }
                Edge::Bottom => {
                    self.split_and_swap(Axis::Horizontal, target, pane, false);
                }
                Edge::Left => {
                    self.split_and_swap(Axis::Vertical, target, pane, true);
                }
                Edge::Right => {
                    self.split_and_swap(Axis::Vertical, target, pane, false);
                }
            },
        }
    }

    /// Drops the given [`Pane`] into the provided [`Target`].
    pub fn drop(&mut self, pane: Pane, target: Target) {
        match target {
            Target::Edge(edge) => self.move_to_edge(pane, edge),
            Target::Pane(target, region) => {
                self.split_with(target, pane, region);
            }
        }
    }

    fn split_node(
        &mut self,
        axis: Axis,
        pane: Option<Pane>,
        state: T,
        inverse: bool,
    ) -> Option<(Pane, Split)> {
        let node = if let Some(pane) = pane {
            self.internal.layout.find(pane)?
        } else {
            // Major node
            &mut self.internal.layout
        };

        let new_pane = {
            self.internal.last_id = self.internal.last_id.checked_add(1)?;

            Pane(self.internal.last_id)
        };

        let new_split = {
            self.internal.last_id = self.internal.last_id.checked_add(1)?;

            Split(self.internal.last_id)
        };

        if inverse {
            node.split_inverse(new_split, axis, new_pane);
        } else {
            node.split(new_split, axis, new_pane);
        }

        let _ = self.panes.insert(new_pane, state);
        let _ = self.internal.maximized.take();

        Some((new_pane, new_split))
    }

    fn split_and_swap(
        &mut self,
        axis: Axis,
        target: Pane,
        pane: Pane,
        swap: bool,
    ) {
        if let Some((state, _)) = self.close(pane) {
            if let Some((new_pane, _)) = self.split(axis, target, state) {
                // Ensure new node corresponds to original closed `Pane` for state continuity
                self.relabel(new_pane, pane);

                if swap {
                    self.swap(target, pane);
                }
            }
        }
    }

    /// Move [`Pane`] to an [`Edge`] of the [`PaneGrid`].
    ///
    /// [`PaneGrid`]: super::PaneGrid
    pub fn move_to_edge(&mut self, pane: Pane, edge: Edge) {
        match edge {
            Edge::Top => {
                self.split_major_node_and_swap(Axis::Horizontal, pane, true);
            }
            Edge::Bottom => {
                self.split_major_node_and_swap(Axis::Horizontal, pane, false);
            }
            Edge::Left => {
                self.split_major_node_and_swap(Axis::Vertical, pane, true);
            }
            Edge::Right => {
                self.split_major_node_and_swap(Axis::Vertical, pane, false);
            }
        }
    }

    fn split_major_node_and_swap(
        &mut self,
        axis: Axis,
        pane: Pane,
        inverse: bool,
    ) {
        if let Some((state, _)) = self.close(pane) {
            if let Some((new_pane, _)) =
                self.split_node(axis, None, state, inverse)
            {
                // Ensure new node corresponds to original closed `Pane` for state continuity
                self.relabel(new_pane, pane);
            }
        }
    }

    fn relabel(&mut self, target: Pane, label: Pane) {
        self.swap(target, label);

        let _ = self
            .panes
            .remove(&target)
            .and_then(|state| self.panes.insert(label, state));
    }

    /// Swaps the position of the provided panes in the [`State`].
    ///
    /// If you want to swap panes on drag and drop in your [`PaneGrid`], you
    /// will need to call this method when handling a [`DragEvent`].
    ///
    /// [`PaneGrid`]: super::PaneGrid
    /// [`DragEvent`]: super::DragEvent
    pub fn swap(&mut self, a: Pane, b: Pane) {
        self.internal.layout.update(&|node| match node {
            Node::Split { .. } => {}
            Node::Pane(pane) => {
                if *pane == a {
                    *node = Node::Pane(b);
                } else if *pane == b {
                    *node = Node::Pane(a);
                }
            }
        });
    }

    /// Resizes two panes by setting the position of the provided [`Split`].
    ///
    /// The ratio is a value in [0, 1], representing the exact position of a
    /// [`Split`] between two panes.
    ///
    /// If you want to enable resize interactions in your [`PaneGrid`], you will
    /// need to call this method when handling a [`ResizeEvent`].
    ///
    /// [`PaneGrid`]: super::PaneGrid
    /// [`ResizeEvent`]: super::ResizeEvent
    pub fn resize(&mut self, split: Split, ratio: f32) {
        let _ = self.internal.layout.resize(split, ratio);
    }

    /// Closes the given [`Pane`] and returns its internal state and its closest
    /// sibling, if it exists.
    pub fn close(&mut self, pane: Pane) -> Option<(T, Pane)> {
        if self.internal.maximized == Some(pane) {
            let _ = self.internal.maximized.take();
        }

        if let Some(sibling) = self.internal.layout.remove(pane) {
            self.panes.remove(&pane).map(|state| (state, sibling))
        } else {
            None
        }
    }

    /// Maximize the given [`Pane`]. Only this pane will be rendered by the
    /// [`PaneGrid`] until [`Self::restore()`] is called.
    ///
    /// [`PaneGrid`]: super::PaneGrid
    pub fn maximize(&mut self, pane: Pane) {
        self.internal.maximized = Some(pane);
    }

    /// Restore the currently maximized [`Pane`] to it's normal size. All panes
    /// will be rendered by the [`PaneGrid`].
    ///
    /// [`PaneGrid`]: super::PaneGrid
    pub fn restore(&mut self) {
        let _ = self.internal.maximized.take();
    }

    /// Returns the maximized [`Pane`] of the [`PaneGrid`].
    ///
    /// [`PaneGrid`]: super::PaneGrid
    pub fn maximized(&self) -> Option<Pane> {
        self.internal.maximized
    }
}

/// The internal state of a [`PaneGrid`].
///
/// [`PaneGrid`]: super::PaneGrid
#[derive(Debug, Clone)]
pub struct Internal {
    layout: Node,
    last_id: usize,
    maximized: Option<Pane>,
}

impl Internal {
    /// Initializes the [`Internal`] state of a [`PaneGrid`] from a
    /// [`Configuration`].
    ///
    /// [`PaneGrid`]: super::PaneGrid
    pub fn from_configuration<T>(
        panes: &mut BTreeMap<Pane, T>,
        content: Configuration<T>,
        next_id: usize,
    ) -> Self {
        let (layout, last_id) = match content {
            Configuration::Split { axis, ratio, a, b } => {
                let Internal {
                    layout: a,
                    last_id: next_id,
                    ..
                } = Self::from_configuration(panes, *a, next_id);

                let Internal {
                    layout: b,
                    last_id: next_id,
                    ..
                } = Self::from_configuration(panes, *b, next_id);

                (
                    Node::Split {
                        id: Split(next_id),
                        axis,
                        ratio,
                        a: Box::new(a),
                        b: Box::new(b),
                    },
                    next_id + 1,
                )
            }
            Configuration::Pane(state) => {
                let id = Pane(next_id);
                let _ = panes.insert(id, state);

                (Node::Pane(id), next_id + 1)
            }
        };

        Self {
            layout,
            last_id,
            maximized: None,
        }
    }

    pub(super) fn layout(&self) -> Cow<'_, Node> {
        match self.maximized {
            Some(pane) => Cow::Owned(Node::Pane(pane)),
            None => Cow::Borrowed(&self.layout),
        }
    }

    pub(super) fn maximized(&self) -> Option<Pane> {
        self.maximized
    }
}

/// The current action of a [`PaneGrid`].
///
/// [`PaneGrid`]: super::PaneGrid
#[derive(Debug, Clone, Copy, PartialEq, Default)]
pub enum Action {
    /// The [`PaneGrid`] is idle.
    ///
    /// [`PaneGrid`]: super::PaneGrid
    #[default]
    Idle,
    /// A [`Pane`] in the [`PaneGrid`] is being dragged.
    ///
    /// [`PaneGrid`]: super::PaneGrid
    Dragging {
        /// The [`Pane`] being dragged.
        pane: Pane,
        /// The starting [`Point`] of the drag interaction.
        origin: Point,
    },
    /// A [`Split`] in the [`PaneGrid`] is being dragged.
    ///
    /// [`PaneGrid`]: super::PaneGrid
    Resizing {
        /// The [`Split`] being dragged.
        split: Split,
        /// The [`Axis`] of the [`Split`].
        axis: Axis,
    },
}

impl Action {
    /// Returns the current [`Pane`] that is being dragged, if any.
    pub fn picked_pane(&self) -> Option<(Pane, Point)> {
        match *self {
            Action::Dragging { pane, origin, .. } => Some((pane, origin)),
            _ => None,
        }
    }

    /// Returns the current [`Split`] that is being dragged, if any.
    pub fn picked_split(&self) -> Option<(Split, Axis)> {
        match *self {
            Action::Resizing { split, axis, .. } => Some((split, axis)),
            _ => None,
        }
    }
}