iced_widget/pane_grid/node.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
use crate::core::{Rectangle, Size};
use crate::pane_grid::{Axis, Pane, Split};
use std::collections::BTreeMap;
/// A layout node of a [`PaneGrid`].
///
/// [`PaneGrid`]: super::PaneGrid
#[derive(Debug, Clone)]
pub enum Node {
/// The region of this [`Node`] is split into two.
Split {
/// The [`Split`] of this [`Node`].
id: Split,
/// The direction of the split.
axis: Axis,
/// The ratio of the split in [0.0, 1.0].
ratio: f32,
/// The left/top [`Node`] of the split.
a: Box<Node>,
/// The right/bottom [`Node`] of the split.
b: Box<Node>,
},
/// The region of this [`Node`] is taken by a [`Pane`].
Pane(Pane),
}
impl Node {
/// Returns an iterator over each [`Split`] in this [`Node`].
pub fn splits(&self) -> impl Iterator<Item = &Split> {
let mut unvisited_nodes = vec![self];
std::iter::from_fn(move || {
while let Some(node) = unvisited_nodes.pop() {
if let Node::Split { id, a, b, .. } = node {
unvisited_nodes.push(a);
unvisited_nodes.push(b);
return Some(id);
}
}
None
})
}
/// Returns the rectangular region for each [`Pane`] in the [`Node`] given
/// the spacing between panes and the total available space.
pub fn pane_regions(
&self,
spacing: f32,
size: Size,
) -> BTreeMap<Pane, Rectangle> {
let mut regions = BTreeMap::new();
self.compute_regions(
spacing,
&Rectangle {
x: 0.0,
y: 0.0,
width: size.width,
height: size.height,
},
&mut regions,
);
regions
}
/// Returns the axis, rectangular region, and ratio for each [`Split`] in
/// the [`Node`] given the spacing between panes and the total available
/// space.
pub fn split_regions(
&self,
spacing: f32,
size: Size,
) -> BTreeMap<Split, (Axis, Rectangle, f32)> {
let mut splits = BTreeMap::new();
self.compute_splits(
spacing,
&Rectangle {
x: 0.0,
y: 0.0,
width: size.width,
height: size.height,
},
&mut splits,
);
splits
}
pub(crate) fn find(&mut self, pane: Pane) -> Option<&mut Node> {
match self {
Node::Split { a, b, .. } => {
a.find(pane).or_else(move || b.find(pane))
}
Node::Pane(p) => {
if *p == pane {
Some(self)
} else {
None
}
}
}
}
pub(crate) fn split(&mut self, id: Split, axis: Axis, new_pane: Pane) {
*self = Node::Split {
id,
axis,
ratio: 0.5,
a: Box::new(self.clone()),
b: Box::new(Node::Pane(new_pane)),
};
}
pub(crate) fn split_inverse(&mut self, id: Split, axis: Axis, pane: Pane) {
*self = Node::Split {
id,
axis,
ratio: 0.5,
a: Box::new(Node::Pane(pane)),
b: Box::new(self.clone()),
};
}
pub(crate) fn update(&mut self, f: &impl Fn(&mut Node)) {
if let Node::Split { a, b, .. } = self {
a.update(f);
b.update(f);
}
f(self);
}
pub(crate) fn resize(&mut self, split: Split, percentage: f32) -> bool {
match self {
Node::Split {
id, ratio, a, b, ..
} => {
if *id == split {
*ratio = percentage;
true
} else if a.resize(split, percentage) {
true
} else {
b.resize(split, percentage)
}
}
Node::Pane(_) => false,
}
}
pub(crate) fn remove(&mut self, pane: Pane) -> Option<Pane> {
match self {
Node::Split { a, b, .. } => {
if a.pane() == Some(pane) {
*self = *b.clone();
Some(self.first_pane())
} else if b.pane() == Some(pane) {
*self = *a.clone();
Some(self.first_pane())
} else {
a.remove(pane).or_else(|| b.remove(pane))
}
}
Node::Pane(_) => None,
}
}
fn pane(&self) -> Option<Pane> {
match self {
Node::Split { .. } => None,
Node::Pane(pane) => Some(*pane),
}
}
fn first_pane(&self) -> Pane {
match self {
Node::Split { a, .. } => a.first_pane(),
Node::Pane(pane) => *pane,
}
}
fn compute_regions(
&self,
spacing: f32,
current: &Rectangle,
regions: &mut BTreeMap<Pane, Rectangle>,
) {
match self {
Node::Split {
axis, ratio, a, b, ..
} => {
let (region_a, region_b) = axis.split(current, *ratio, spacing);
a.compute_regions(spacing, ®ion_a, regions);
b.compute_regions(spacing, ®ion_b, regions);
}
Node::Pane(pane) => {
let _ = regions.insert(*pane, *current);
}
}
}
fn compute_splits(
&self,
spacing: f32,
current: &Rectangle,
splits: &mut BTreeMap<Split, (Axis, Rectangle, f32)>,
) {
match self {
Node::Split {
axis,
ratio,
a,
b,
id,
} => {
let (region_a, region_b) = axis.split(current, *ratio, spacing);
let _ = splits.insert(*id, (*axis, *current, *ratio));
a.compute_splits(spacing, ®ion_a, splits);
b.compute_splits(spacing, ®ion_b, splits);
}
Node::Pane(_) => {}
}
}
}
impl std::hash::Hash for Node {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
match self {
Node::Split {
id,
axis,
ratio,
a,
b,
} => {
id.hash(state);
axis.hash(state);
((ratio * 100_000.0) as u32).hash(state);
a.hash(state);
b.hash(state);
}
Node::Pane(pane) => {
pane.hash(state);
}
}
}
}