iced_core/
image.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
//! Load and draw raster graphics.
pub use bytes::Bytes;

use crate::{Radians, Rectangle, Size};

use rustc_hash::FxHasher;
use std::hash::{Hash, Hasher};
use std::path::{Path, PathBuf};

/// A raster image that can be drawn.
#[derive(Debug, Clone, PartialEq)]
pub struct Image<H = Handle> {
    /// The handle of the image.
    pub handle: H,

    /// The filter method of the image.
    pub filter_method: FilterMethod,

    /// The rotation to be applied to the image; on its center.
    pub rotation: Radians,

    /// The opacity of the image.
    ///
    /// 0 means transparent. 1 means opaque.
    pub opacity: f32,

    /// If set to `true`, the image will be snapped to the pixel grid.
    ///
    /// This can avoid graphical glitches, specially when using
    /// [`FilterMethod::Nearest`].
    pub snap: bool,
}

impl Image<Handle> {
    /// Creates a new [`Image`] with the given handle.
    pub fn new(handle: impl Into<Handle>) -> Self {
        Self {
            handle: handle.into(),
            filter_method: FilterMethod::default(),
            rotation: Radians(0.0),
            opacity: 1.0,
            snap: false,
        }
    }

    /// Sets the filter method of the [`Image`].
    pub fn filter_method(mut self, filter_method: FilterMethod) -> Self {
        self.filter_method = filter_method;
        self
    }

    /// Sets the rotation of the [`Image`].
    pub fn rotation(mut self, rotation: impl Into<Radians>) -> Self {
        self.rotation = rotation.into();
        self
    }

    /// Sets the opacity of the [`Image`].
    pub fn opacity(mut self, opacity: impl Into<f32>) -> Self {
        self.opacity = opacity.into();
        self
    }

    /// Sets whether the [`Image`] should be snapped to the pixel grid.
    pub fn snap(mut self, snap: bool) -> Self {
        self.snap = snap;
        self
    }
}

impl From<&Handle> for Image {
    fn from(handle: &Handle) -> Self {
        Image::new(handle.clone())
    }
}

/// A handle of some image data.
#[derive(Clone, PartialEq, Eq)]
pub enum Handle {
    /// A file handle. The image data will be read
    /// from the file path.
    ///
    /// Use [`from_path`] to create this variant.
    ///
    /// [`from_path`]: Self::from_path
    Path(Id, PathBuf),

    /// A handle pointing to some encoded image bytes in-memory.
    ///
    /// Use [`from_bytes`] to create this variant.
    ///
    /// [`from_bytes`]: Self::from_bytes
    Bytes(Id, Bytes),

    /// A handle pointing to decoded image pixels in RGBA format.
    ///
    /// Use [`from_rgba`] to create this variant.
    ///
    /// [`from_rgba`]: Self::from_rgba
    Rgba {
        /// The id of this handle.
        id: Id,
        /// The width of the image.
        width: u32,
        /// The height of the image.
        height: u32,
        /// The pixels.
        pixels: Bytes,
    },
}

impl Handle {
    /// Creates an image [`Handle`] pointing to the image of the given path.
    ///
    /// Makes an educated guess about the image format by examining the data in the file.
    pub fn from_path<T: Into<PathBuf>>(path: T) -> Handle {
        let path = path.into();

        Self::Path(Id::path(&path), path)
    }

    /// Creates an image [`Handle`] containing the encoded image data directly.
    ///
    /// Makes an educated guess about the image format by examining the given data.
    ///
    /// This is useful if you already have your image loaded in-memory, maybe
    /// because you downloaded or generated it procedurally.
    pub fn from_bytes(bytes: impl Into<Bytes>) -> Handle {
        Self::Bytes(Id::unique(), bytes.into())
    }

    /// Creates an image [`Handle`] containing the decoded image pixels directly.
    ///
    /// This function expects the pixel data to be provided as a collection of [`Bytes`]
    /// of RGBA pixels. Therefore, the length of the pixel data should always be
    /// `width * height * 4`.
    ///
    /// This is useful if you have already decoded your image.
    pub fn from_rgba(
        width: u32,
        height: u32,
        pixels: impl Into<Bytes>,
    ) -> Handle {
        Self::Rgba {
            id: Id::unique(),
            width,
            height,
            pixels: pixels.into(),
        }
    }

    /// Returns the unique identifier of the [`Handle`].
    pub fn id(&self) -> Id {
        match self {
            Handle::Path(id, _)
            | Handle::Bytes(id, _)
            | Handle::Rgba { id, .. } => *id,
        }
    }
}

impl<T> From<T> for Handle
where
    T: Into<PathBuf>,
{
    fn from(path: T) -> Handle {
        Handle::from_path(path.into())
    }
}

impl From<&Handle> for Handle {
    fn from(value: &Handle) -> Self {
        value.clone()
    }
}

impl std::fmt::Debug for Handle {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            Self::Path(_, path) => write!(f, "Path({path:?})"),
            Self::Bytes(_, _) => write!(f, "Bytes(...)"),
            Self::Rgba { width, height, .. } => {
                write!(f, "Pixels({width} * {height})")
            }
        }
    }
}

/// The unique identifier of some [`Handle`] data.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Id(_Id);

#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
enum _Id {
    Unique(u64),
    Hash(u64),
}

impl Id {
    fn unique() -> Self {
        use std::sync::atomic::{self, AtomicU64};

        static NEXT_ID: AtomicU64 = AtomicU64::new(0);

        Self(_Id::Unique(NEXT_ID.fetch_add(1, atomic::Ordering::Relaxed)))
    }

    fn path(path: impl AsRef<Path>) -> Self {
        let hash = {
            let mut hasher = FxHasher::default();
            path.as_ref().hash(&mut hasher);

            hasher.finish()
        };

        Self(_Id::Hash(hash))
    }
}

/// Image filtering strategy.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Default)]
pub enum FilterMethod {
    /// Bilinear interpolation.
    #[default]
    Linear,
    /// Nearest neighbor.
    Nearest,
}

/// A [`Renderer`] that can render raster graphics.
///
/// [renderer]: crate::renderer
pub trait Renderer: crate::Renderer {
    /// The image Handle to be displayed. Iced exposes its own default implementation of a [`Handle`]
    ///
    /// [`Handle`]: Self::Handle
    type Handle: Clone;

    /// Returns the dimensions of an image for the given [`Handle`].
    fn measure_image(&self, handle: &Self::Handle) -> Size<u32>;

    /// Draws an [`Image`] inside the provided `bounds`.
    fn draw_image(&mut self, image: Image<Self::Handle>, bounds: Rectangle);
}