1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
use crate::event::{self, Event};
use crate::layout;
use crate::mouse;
use crate::overlay;
use crate::renderer;
use crate::widget;
use crate::widget::tree::{self, Tree};
use crate::{
    Border, Clipboard, Color, Layout, Length, Rectangle, Shell, Size, Vector,
    Widget,
};

use std::any::Any;
use std::borrow::Borrow;

/// A generic [`Widget`].
///
/// It is useful to build composable user interfaces that do not leak
/// implementation details in their __view logic__.
///
/// If you have a [built-in widget], you should be able to use `Into<Element>`
/// to turn it into an [`Element`].
///
/// [built-in widget]: crate::widget
#[allow(missing_debug_implementations)]
pub struct Element<'a, Message, Theme, Renderer> {
    widget: Box<dyn Widget<Message, Theme, Renderer> + 'a>,
}

impl<'a, Message, Theme, Renderer> Element<'a, Message, Theme, Renderer> {
    /// Creates a new [`Element`] containing the given [`Widget`].
    pub fn new(widget: impl Widget<Message, Theme, Renderer> + 'a) -> Self
    where
        Renderer: crate::Renderer,
    {
        Self {
            widget: Box::new(widget),
        }
    }

    /// Returns a reference to the [`Widget`] of the [`Element`],
    pub fn as_widget(&self) -> &dyn Widget<Message, Theme, Renderer> {
        self.widget.as_ref()
    }

    /// Returns a mutable reference to the [`Widget`] of the [`Element`],
    pub fn as_widget_mut(
        &mut self,
    ) -> &mut dyn Widget<Message, Theme, Renderer> {
        self.widget.as_mut()
    }

    /// Applies a transformation to the produced message of the [`Element`].
    ///
    /// This method is useful when you want to decouple different parts of your
    /// UI and make them __composable__.
    ///
    /// # Example
    /// Imagine we want to use [our counter](index.html#usage). But instead of
    /// showing a single counter, we want to display many of them. We can reuse
    /// the `Counter` type as it is!
    ///
    /// We use composition to model the __state__ of our new application:
    ///
    /// ```
    /// # mod counter {
    /// #     pub struct Counter;
    /// # }
    /// use counter::Counter;
    ///
    /// struct ManyCounters {
    ///     counters: Vec<Counter>,
    /// }
    /// ```
    ///
    /// We can store the state of multiple counters now. However, the
    /// __messages__ we implemented before describe the user interactions
    /// of a __single__ counter. Right now, we need to also identify which
    /// counter is receiving user interactions. Can we use composition again?
    /// Yes.
    ///
    /// ```
    /// # mod counter {
    /// #     #[derive(Debug, Clone, Copy)]
    /// #     pub enum Message {}
    /// # }
    /// #[derive(Debug, Clone, Copy)]
    /// pub enum Message {
    ///     Counter(usize, counter::Message)
    /// }
    /// ```
    ///
    /// We compose the previous __messages__ with the index of the counter
    /// producing them. Let's implement our __view logic__ now:
    ///
    /// ```no_run
    /// # mod iced {
    /// #     pub type Element<'a, Message> = iced_core::Element<'a, Message, iced_core::Theme, ()>;
    /// #
    /// #     pub mod widget {
    /// #         pub fn row<'a, Message>(iter: impl IntoIterator<Item = super::Element<'a, Message>>) -> super::Element<'a, Message> {
    /// #             unimplemented!()
    /// #         }
    /// #     }
    /// # }
    /// #
    /// # mod counter {
    /// #     #[derive(Debug, Clone, Copy)]
    /// #     pub enum Message {}
    /// #     pub struct Counter;
    /// #
    /// #     pub type Element<'a, Message> = iced_core::Element<'a, Message, iced_core::Theme, ()>;
    /// #
    /// #     impl Counter {
    /// #         pub fn view(&self) -> Element<Message> {
    /// #             unimplemented!()
    /// #         }
    /// #     }
    /// # }
    /// #
    /// use counter::Counter;
    ///
    /// use iced::widget::row;
    /// use iced::Element;
    ///
    /// struct ManyCounters {
    ///     counters: Vec<Counter>,
    /// }
    ///
    /// #[derive(Debug, Clone, Copy)]
    /// pub enum Message {
    ///     Counter(usize, counter::Message),
    /// }
    ///
    /// impl ManyCounters {
    ///     pub fn view(&self) -> Element<Message> {
    ///         // We can quickly populate a `row` by mapping our counters
    ///         row(
    ///             self.counters
    ///                 .iter()
    ///                 .map(Counter::view)
    ///                 .enumerate()
    ///                 .map(|(index, counter)| {
    ///                     // Here we turn our `Element<counter::Message>` into
    ///                     // an `Element<Message>` by combining the `index` and the
    ///                     // message of the `element`.
    ///                     counter.map(move |message| Message::Counter(index, message))
    ///                 }),
    ///         )
    ///         .into()
    ///     }
    /// }
    /// ```
    ///
    /// Finally, our __update logic__ is pretty straightforward: simple
    /// delegation.
    ///
    /// ```
    /// # mod counter {
    /// #     #[derive(Debug, Clone, Copy)]
    /// #     pub enum Message {}
    /// #     pub struct Counter;
    /// #
    /// #     impl Counter {
    /// #         pub fn update(&mut self, _message: Message) {}
    /// #     }
    /// # }
    /// #
    /// # use counter::Counter;
    /// #
    /// # struct ManyCounters {
    /// #     counters: Vec<Counter>,
    /// # }
    /// #
    /// # #[derive(Debug, Clone, Copy)]
    /// # pub enum Message {
    /// #    Counter(usize, counter::Message)
    /// # }
    /// impl ManyCounters {
    ///     pub fn update(&mut self, message: Message) {
    ///         match message {
    ///             Message::Counter(index, counter_msg) => {
    ///                 if let Some(counter) = self.counters.get_mut(index) {
    ///                     counter.update(counter_msg);
    ///                 }
    ///             }
    ///         }
    ///     }
    /// }
    /// ```
    pub fn map<B>(
        self,
        f: impl Fn(Message) -> B + 'a,
    ) -> Element<'a, B, Theme, Renderer>
    where
        Message: 'a,
        Theme: 'a,
        Renderer: crate::Renderer + 'a,
        B: 'a,
    {
        Element::new(Map::new(self.widget, f))
    }

    /// Marks the [`Element`] as _to-be-explained_.
    ///
    /// The [`Renderer`] will explain the layout of the [`Element`] graphically.
    /// This can be very useful for debugging your layout!
    ///
    /// [`Renderer`]: crate::Renderer
    pub fn explain<C: Into<Color>>(
        self,
        color: C,
    ) -> Element<'a, Message, Theme, Renderer>
    where
        Message: 'a,
        Theme: 'a,
        Renderer: crate::Renderer + 'a,
    {
        Element {
            widget: Box::new(Explain::new(self, color.into())),
        }
    }
}

impl<'a, Message, Theme, Renderer>
    Borrow<dyn Widget<Message, Theme, Renderer> + 'a>
    for Element<'a, Message, Theme, Renderer>
{
    fn borrow(&self) -> &(dyn Widget<Message, Theme, Renderer> + 'a) {
        self.widget.borrow()
    }
}

impl<'a, Message, Theme, Renderer>
    Borrow<dyn Widget<Message, Theme, Renderer> + 'a>
    for &Element<'a, Message, Theme, Renderer>
{
    fn borrow(&self) -> &(dyn Widget<Message, Theme, Renderer> + 'a) {
        self.widget.borrow()
    }
}

struct Map<'a, A, B, Theme, Renderer> {
    widget: Box<dyn Widget<A, Theme, Renderer> + 'a>,
    mapper: Box<dyn Fn(A) -> B + 'a>,
}

impl<'a, A, B, Theme, Renderer> Map<'a, A, B, Theme, Renderer> {
    pub fn new<F>(
        widget: Box<dyn Widget<A, Theme, Renderer> + 'a>,
        mapper: F,
    ) -> Map<'a, A, B, Theme, Renderer>
    where
        F: 'a + Fn(A) -> B,
    {
        Map {
            widget,
            mapper: Box::new(mapper),
        }
    }
}

impl<'a, A, B, Theme, Renderer> Widget<B, Theme, Renderer>
    for Map<'a, A, B, Theme, Renderer>
where
    Renderer: crate::Renderer + 'a,
    A: 'a,
    B: 'a,
{
    fn tag(&self) -> tree::Tag {
        self.widget.tag()
    }

    fn state(&self) -> tree::State {
        self.widget.state()
    }

    fn children(&self) -> Vec<Tree> {
        self.widget.children()
    }

    fn diff(&self, tree: &mut Tree) {
        self.widget.diff(tree);
    }

    fn size(&self) -> Size<Length> {
        self.widget.size()
    }

    fn size_hint(&self) -> Size<Length> {
        self.widget.size_hint()
    }

    fn layout(
        &self,
        tree: &mut Tree,
        renderer: &Renderer,
        limits: &layout::Limits,
    ) -> layout::Node {
        self.widget.layout(tree, renderer, limits)
    }

    fn operate(
        &self,
        tree: &mut Tree,
        layout: Layout<'_>,
        renderer: &Renderer,
        operation: &mut dyn widget::Operation<B>,
    ) {
        struct MapOperation<'a, B> {
            operation: &'a mut dyn widget::Operation<B>,
        }

        impl<'a, T, B> widget::Operation<T> for MapOperation<'a, B> {
            fn container(
                &mut self,
                id: Option<&widget::Id>,
                bounds: Rectangle,
                operate_on_children: &mut dyn FnMut(
                    &mut dyn widget::Operation<T>,
                ),
            ) {
                self.operation.container(id, bounds, &mut |operation| {
                    operate_on_children(&mut MapOperation { operation });
                });
            }

            fn focusable(
                &mut self,
                state: &mut dyn widget::operation::Focusable,
                id: Option<&widget::Id>,
            ) {
                self.operation.focusable(state, id);
            }

            fn scrollable(
                &mut self,
                state: &mut dyn widget::operation::Scrollable,
                id: Option<&widget::Id>,
                bounds: Rectangle,
                translation: Vector,
            ) {
                self.operation.scrollable(state, id, bounds, translation);
            }

            fn text_input(
                &mut self,
                state: &mut dyn widget::operation::TextInput,
                id: Option<&widget::Id>,
            ) {
                self.operation.text_input(state, id);
            }

            fn custom(&mut self, state: &mut dyn Any, id: Option<&widget::Id>) {
                self.operation.custom(state, id);
            }
        }

        self.widget.operate(
            tree,
            layout,
            renderer,
            &mut MapOperation { operation },
        );
    }

    fn on_event(
        &mut self,
        tree: &mut Tree,
        event: Event,
        layout: Layout<'_>,
        cursor: mouse::Cursor,
        renderer: &Renderer,
        clipboard: &mut dyn Clipboard,
        shell: &mut Shell<'_, B>,
        viewport: &Rectangle,
    ) -> event::Status {
        let mut local_messages = Vec::new();
        let mut local_shell = Shell::new(&mut local_messages);

        let status = self.widget.on_event(
            tree,
            event,
            layout,
            cursor,
            renderer,
            clipboard,
            &mut local_shell,
            viewport,
        );

        shell.merge(local_shell, &self.mapper);

        status
    }

    fn draw(
        &self,
        tree: &Tree,
        renderer: &mut Renderer,
        theme: &Theme,
        style: &renderer::Style,
        layout: Layout<'_>,
        cursor: mouse::Cursor,
        viewport: &Rectangle,
    ) {
        self.widget
            .draw(tree, renderer, theme, style, layout, cursor, viewport);
    }

    fn mouse_interaction(
        &self,
        tree: &Tree,
        layout: Layout<'_>,
        cursor: mouse::Cursor,
        viewport: &Rectangle,
        renderer: &Renderer,
    ) -> mouse::Interaction {
        self.widget
            .mouse_interaction(tree, layout, cursor, viewport, renderer)
    }

    fn overlay<'b>(
        &'b mut self,
        tree: &'b mut Tree,
        layout: Layout<'_>,
        renderer: &Renderer,
        translation: Vector,
    ) -> Option<overlay::Element<'b, B, Theme, Renderer>> {
        let mapper = &self.mapper;

        self.widget
            .overlay(tree, layout, renderer, translation)
            .map(move |overlay| overlay.map(mapper))
    }
}

struct Explain<'a, Message, Theme, Renderer: crate::Renderer> {
    element: Element<'a, Message, Theme, Renderer>,
    color: Color,
}

impl<'a, Message, Theme, Renderer> Explain<'a, Message, Theme, Renderer>
where
    Renderer: crate::Renderer,
{
    fn new(
        element: Element<'a, Message, Theme, Renderer>,
        color: Color,
    ) -> Self {
        Explain { element, color }
    }
}

impl<'a, Message, Theme, Renderer> Widget<Message, Theme, Renderer>
    for Explain<'a, Message, Theme, Renderer>
where
    Renderer: crate::Renderer,
{
    fn size(&self) -> Size<Length> {
        self.element.widget.size()
    }

    fn size_hint(&self) -> Size<Length> {
        self.element.widget.size_hint()
    }

    fn tag(&self) -> tree::Tag {
        self.element.widget.tag()
    }

    fn state(&self) -> tree::State {
        self.element.widget.state()
    }

    fn children(&self) -> Vec<Tree> {
        self.element.widget.children()
    }

    fn diff(&self, tree: &mut Tree) {
        self.element.widget.diff(tree);
    }

    fn layout(
        &self,
        tree: &mut Tree,
        renderer: &Renderer,
        limits: &layout::Limits,
    ) -> layout::Node {
        self.element.widget.layout(tree, renderer, limits)
    }

    fn operate(
        &self,
        state: &mut Tree,
        layout: Layout<'_>,
        renderer: &Renderer,
        operation: &mut dyn widget::Operation<Message>,
    ) {
        self.element
            .widget
            .operate(state, layout, renderer, operation);
    }

    fn on_event(
        &mut self,
        state: &mut Tree,
        event: Event,
        layout: Layout<'_>,
        cursor: mouse::Cursor,
        renderer: &Renderer,
        clipboard: &mut dyn Clipboard,
        shell: &mut Shell<'_, Message>,
        viewport: &Rectangle,
    ) -> event::Status {
        self.element.widget.on_event(
            state, event, layout, cursor, renderer, clipboard, shell, viewport,
        )
    }

    fn draw(
        &self,
        state: &Tree,
        renderer: &mut Renderer,
        theme: &Theme,
        style: &renderer::Style,
        layout: Layout<'_>,
        cursor: mouse::Cursor,
        viewport: &Rectangle,
    ) {
        fn explain_layout<Renderer: crate::Renderer>(
            renderer: &mut Renderer,
            color: Color,
            layout: Layout<'_>,
        ) {
            renderer.fill_quad(
                renderer::Quad {
                    bounds: layout.bounds(),
                    border: Border {
                        color,
                        width: 1.0,
                        ..Border::default()
                    },
                    ..renderer::Quad::default()
                },
                Color::TRANSPARENT,
            );

            for child in layout.children() {
                explain_layout(renderer, color, child);
            }
        }

        self.element
            .widget
            .draw(state, renderer, theme, style, layout, cursor, viewport);

        explain_layout(renderer, self.color, layout);
    }

    fn mouse_interaction(
        &self,
        state: &Tree,
        layout: Layout<'_>,
        cursor: mouse::Cursor,
        viewport: &Rectangle,
        renderer: &Renderer,
    ) -> mouse::Interaction {
        self.element
            .widget
            .mouse_interaction(state, layout, cursor, viewport, renderer)
    }

    fn overlay<'b>(
        &'b mut self,
        state: &'b mut Tree,
        layout: Layout<'_>,
        renderer: &Renderer,
        translation: Vector,
    ) -> Option<overlay::Element<'b, Message, Theme, Renderer>> {
        self.element
            .widget
            .overlay(state, layout, renderer, translation)
    }
}