iced_core/layout/
flex.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
//! Distribute elements using a flex-based layout.
// This code is heavily inspired by the [`druid`] codebase.
//
// [`druid`]: https://github.com/xi-editor/druid
//
// Copyright 2018 The xi-editor Authors, Héctor Ramón
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use crate::Element;

use crate::layout::{Limits, Node};
use crate::widget;
use crate::{Alignment, Length, Padding, Point, Size};

/// The main axis of a flex layout.
#[derive(Debug)]
pub enum Axis {
    /// The horizontal axis
    Horizontal,

    /// The vertical axis
    Vertical,
}

impl Axis {
    fn main(&self, size: Size) -> f32 {
        match self {
            Axis::Horizontal => size.width,
            Axis::Vertical => size.height,
        }
    }

    fn cross(&self, size: Size) -> f32 {
        match self {
            Axis::Horizontal => size.height,
            Axis::Vertical => size.width,
        }
    }

    fn pack<T>(&self, main: T, cross: T) -> (T, T) {
        match self {
            Axis::Horizontal => (main, cross),
            Axis::Vertical => (cross, main),
        }
    }
}

/// Computes the flex layout with the given axis and limits, applying spacing,
/// padding and alignment to the items as needed.
///
/// It returns a new layout [`Node`].
pub fn resolve<Message, Theme, Renderer>(
    axis: Axis,
    renderer: &Renderer,
    limits: &Limits,
    width: Length,
    height: Length,
    padding: Padding,
    spacing: f32,
    align_items: Alignment,
    items: &[Element<'_, Message, Theme, Renderer>],
    trees: &mut [widget::Tree],
) -> Node
where
    Renderer: crate::Renderer,
{
    let limits = limits.width(width).height(height).shrink(padding);
    let total_spacing = spacing * items.len().saturating_sub(1) as f32;
    let max_cross = axis.cross(limits.max());

    let mut fill_main_sum = 0;
    let mut some_fill_cross = false;
    let (mut cross, cross_compress) = match axis {
        Axis::Vertical if width == Length::Shrink => (0.0, true),
        Axis::Horizontal if height == Length::Shrink => (0.0, true),
        _ => (max_cross, false),
    };

    let mut available = axis.main(limits.max()) - total_spacing;

    let mut nodes: Vec<Node> = Vec::with_capacity(items.len());
    nodes.resize(items.len(), Node::default());

    // FIRST PASS
    // We lay out non-fluid elements in the main axis.
    // If we need to compress the cross axis, then we skip any of these elements
    // that are also fluid in the cross axis.
    for (i, (child, tree)) in items.iter().zip(trees.iter_mut()).enumerate() {
        let (fill_main_factor, fill_cross_factor) = {
            let size = child.as_widget().size();

            axis.pack(size.width.fill_factor(), size.height.fill_factor())
        };

        if fill_main_factor == 0 && (!cross_compress || fill_cross_factor == 0)
        {
            let (max_width, max_height) = axis.pack(
                available,
                if fill_cross_factor == 0 {
                    max_cross
                } else {
                    cross
                },
            );

            let child_limits =
                Limits::new(Size::ZERO, Size::new(max_width, max_height));

            let layout =
                child.as_widget().layout(tree, renderer, &child_limits);
            let size = layout.size();

            available -= axis.main(size);
            cross = cross.max(axis.cross(size));

            nodes[i] = layout;
        } else {
            fill_main_sum += fill_main_factor;
            some_fill_cross = some_fill_cross || fill_cross_factor != 0;
        }
    }

    // SECOND PASS (conditional)
    // If we must compress the cross axis and there are fluid elements in the
    // cross axis, we lay out any of these elements that are also non-fluid in
    // the main axis (i.e. the ones we deliberately skipped in the first pass).
    //
    // We use the maximum cross length obtained in the first pass as the maximum
    // cross limit.
    if cross_compress && some_fill_cross {
        for (i, (child, tree)) in items.iter().zip(trees.iter_mut()).enumerate()
        {
            let (fill_main_factor, fill_cross_factor) = {
                let size = child.as_widget().size();

                axis.pack(size.width.fill_factor(), size.height.fill_factor())
            };

            if fill_main_factor == 0 && fill_cross_factor != 0 {
                let (max_width, max_height) = axis.pack(available, cross);

                let child_limits =
                    Limits::new(Size::ZERO, Size::new(max_width, max_height));

                let layout =
                    child.as_widget().layout(tree, renderer, &child_limits);
                let size = layout.size();

                available -= axis.main(size);
                cross = cross.max(axis.cross(size));

                nodes[i] = layout;
            }
        }
    }

    let remaining = match axis {
        Axis::Horizontal => match width {
            Length::Shrink => 0.0,
            _ => available.max(0.0),
        },
        Axis::Vertical => match height {
            Length::Shrink => 0.0,
            _ => available.max(0.0),
        },
    };

    // THIRD PASS
    // We only have the elements that are fluid in the main axis left.
    // We use the remaining space to evenly allocate space based on fill factors.
    for (i, (child, tree)) in items.iter().zip(trees).enumerate() {
        let (fill_main_factor, fill_cross_factor) = {
            let size = child.as_widget().size();

            axis.pack(size.width.fill_factor(), size.height.fill_factor())
        };

        if fill_main_factor != 0 {
            let max_main =
                remaining * fill_main_factor as f32 / fill_main_sum as f32;

            let max_main = if max_main.is_nan() {
                f32::INFINITY
            } else {
                max_main
            };

            let min_main = if max_main.is_infinite() {
                0.0
            } else {
                max_main
            };

            let (min_width, min_height) = axis.pack(min_main, 0.0);
            let (max_width, max_height) = axis.pack(
                max_main,
                if fill_cross_factor == 0 {
                    max_cross
                } else {
                    cross
                },
            );

            let child_limits = Limits::new(
                Size::new(min_width, min_height),
                Size::new(max_width, max_height),
            );

            let layout =
                child.as_widget().layout(tree, renderer, &child_limits);
            cross = cross.max(axis.cross(layout.size()));

            nodes[i] = layout;
        }
    }

    let pad = axis.pack(padding.left, padding.top);
    let mut main = pad.0;

    // FOURTH PASS
    // We align all the laid out nodes in the cross axis, if needed.
    for (i, node) in nodes.iter_mut().enumerate() {
        if i > 0 {
            main += spacing;
        }

        let (x, y) = axis.pack(main, pad.1);

        node.move_to_mut(Point::new(x, y));

        match axis {
            Axis::Horizontal => {
                node.align_mut(
                    Alignment::Start,
                    align_items,
                    Size::new(0.0, cross),
                );
            }
            Axis::Vertical => {
                node.align_mut(
                    align_items,
                    Alignment::Start,
                    Size::new(cross, 0.0),
                );
            }
        }

        let size = node.size();

        main += axis.main(size);
    }

    let (intrinsic_width, intrinsic_height) = axis.pack(main - pad.0, cross);
    let size = limits.resolve(
        width,
        height,
        Size::new(intrinsic_width, intrinsic_height),
    );

    Node::with_children(size.expand(padding), nodes)
}