iced_core/layout/flex.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
//! Distribute elements using a flex-based layout.
// This code is heavily inspired by the [`druid`] codebase.
//
// [`druid`]: https://github.com/xi-editor/druid
//
// Copyright 2018 The xi-editor Authors, Héctor Ramón
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use crate::Element;
use crate::layout::{Limits, Node};
use crate::widget;
use crate::{Alignment, Length, Padding, Point, Size};
/// The main axis of a flex layout.
#[derive(Debug)]
pub enum Axis {
/// The horizontal axis
Horizontal,
/// The vertical axis
Vertical,
}
impl Axis {
fn main(&self, size: Size) -> f32 {
match self {
Axis::Horizontal => size.width,
Axis::Vertical => size.height,
}
}
fn cross(&self, size: Size) -> f32 {
match self {
Axis::Horizontal => size.height,
Axis::Vertical => size.width,
}
}
fn pack<T>(&self, main: T, cross: T) -> (T, T) {
match self {
Axis::Horizontal => (main, cross),
Axis::Vertical => (cross, main),
}
}
}
/// Computes the flex layout with the given axis and limits, applying spacing,
/// padding and alignment to the items as needed.
///
/// It returns a new layout [`Node`].
pub fn resolve<Message, Theme, Renderer>(
axis: Axis,
renderer: &Renderer,
limits: &Limits,
width: Length,
height: Length,
padding: Padding,
spacing: f32,
align_items: Alignment,
items: &[Element<'_, Message, Theme, Renderer>],
trees: &mut [widget::Tree],
) -> Node
where
Renderer: crate::Renderer,
{
let limits = limits.width(width).height(height).shrink(padding);
let total_spacing = spacing * items.len().saturating_sub(1) as f32;
let max_cross = axis.cross(limits.max());
let mut fill_main_sum = 0;
let mut some_fill_cross = false;
let (mut cross, cross_compress) = match axis {
Axis::Vertical if width == Length::Shrink => (0.0, true),
Axis::Horizontal if height == Length::Shrink => (0.0, true),
_ => (max_cross, false),
};
let mut available = axis.main(limits.max()) - total_spacing;
let mut nodes: Vec<Node> = Vec::with_capacity(items.len());
nodes.resize(items.len(), Node::default());
// FIRST PASS
// We lay out non-fluid elements in the main axis.
// If we need to compress the cross axis, then we skip any of these elements
// that are also fluid in the cross axis.
for (i, (child, tree)) in items.iter().zip(trees.iter_mut()).enumerate() {
let (fill_main_factor, fill_cross_factor) = {
let size = child.as_widget().size();
axis.pack(size.width.fill_factor(), size.height.fill_factor())
};
if fill_main_factor == 0 && (!cross_compress || fill_cross_factor == 0)
{
let (max_width, max_height) = axis.pack(
available,
if fill_cross_factor == 0 {
max_cross
} else {
cross
},
);
let child_limits =
Limits::new(Size::ZERO, Size::new(max_width, max_height));
let layout =
child.as_widget().layout(tree, renderer, &child_limits);
let size = layout.size();
available -= axis.main(size);
cross = cross.max(axis.cross(size));
nodes[i] = layout;
} else {
fill_main_sum += fill_main_factor;
some_fill_cross = some_fill_cross || fill_cross_factor != 0;
}
}
// SECOND PASS (conditional)
// If we must compress the cross axis and there are fluid elements in the
// cross axis, we lay out any of these elements that are also non-fluid in
// the main axis (i.e. the ones we deliberately skipped in the first pass).
//
// We use the maximum cross length obtained in the first pass as the maximum
// cross limit.
if cross_compress && some_fill_cross {
for (i, (child, tree)) in items.iter().zip(trees.iter_mut()).enumerate()
{
let (fill_main_factor, fill_cross_factor) = {
let size = child.as_widget().size();
axis.pack(size.width.fill_factor(), size.height.fill_factor())
};
if fill_main_factor == 0 && fill_cross_factor != 0 {
let (max_width, max_height) = axis.pack(available, cross);
let child_limits =
Limits::new(Size::ZERO, Size::new(max_width, max_height));
let layout =
child.as_widget().layout(tree, renderer, &child_limits);
let size = layout.size();
available -= axis.main(size);
cross = cross.max(axis.cross(size));
nodes[i] = layout;
}
}
}
let remaining = match axis {
Axis::Horizontal => match width {
Length::Shrink => 0.0,
_ => available.max(0.0),
},
Axis::Vertical => match height {
Length::Shrink => 0.0,
_ => available.max(0.0),
},
};
// THIRD PASS
// We only have the elements that are fluid in the main axis left.
// We use the remaining space to evenly allocate space based on fill factors.
for (i, (child, tree)) in items.iter().zip(trees).enumerate() {
let (fill_main_factor, fill_cross_factor) = {
let size = child.as_widget().size();
axis.pack(size.width.fill_factor(), size.height.fill_factor())
};
if fill_main_factor != 0 {
let max_main =
remaining * fill_main_factor as f32 / fill_main_sum as f32;
let max_main = if max_main.is_nan() {
f32::INFINITY
} else {
max_main
};
let min_main = if max_main.is_infinite() {
0.0
} else {
max_main
};
let (min_width, min_height) = axis.pack(min_main, 0.0);
let (max_width, max_height) = axis.pack(
max_main,
if fill_cross_factor == 0 {
max_cross
} else {
cross
},
);
let child_limits = Limits::new(
Size::new(min_width, min_height),
Size::new(max_width, max_height),
);
let layout =
child.as_widget().layout(tree, renderer, &child_limits);
cross = cross.max(axis.cross(layout.size()));
nodes[i] = layout;
}
}
let pad = axis.pack(padding.left, padding.top);
let mut main = pad.0;
// FOURTH PASS
// We align all the laid out nodes in the cross axis, if needed.
for (i, node) in nodes.iter_mut().enumerate() {
if i > 0 {
main += spacing;
}
let (x, y) = axis.pack(main, pad.1);
node.move_to_mut(Point::new(x, y));
match axis {
Axis::Horizontal => {
node.align_mut(
Alignment::Start,
align_items,
Size::new(0.0, cross),
);
}
Axis::Vertical => {
node.align_mut(
align_items,
Alignment::Start,
Size::new(cross, 0.0),
);
}
}
let size = node.size();
main += axis.main(size);
}
let (intrinsic_width, intrinsic_height) = axis.pack(main - pad.0, cross);
let size = limits.resolve(
width,
height,
Size::new(intrinsic_width, intrinsic_height),
);
Node::with_children(size.expand(padding), nodes)
}