1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
use crate::{Radians, Vector};

/// An amount of space in 2 dimensions.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Default)]
pub struct Size<T = f32> {
    /// The width.
    pub width: T,
    /// The height.
    pub height: T,
}

impl<T> Size<T> {
    /// Creates a new  [`Size`] with the given width and height.
    pub const fn new(width: T, height: T) -> Self {
        Size { width, height }
    }
}

impl Size {
    /// A [`Size`] with zero width and height.
    pub const ZERO: Size = Size::new(0., 0.);

    /// A [`Size`] with a width and height of 1 unit.
    pub const UNIT: Size = Size::new(1., 1.);

    /// A [`Size`] with infinite width and height.
    pub const INFINITY: Size = Size::new(f32::INFINITY, f32::INFINITY);

    /// Returns the minimum of each component of this size and another.
    pub fn min(self, other: Self) -> Self {
        Size {
            width: self.width.min(other.width),
            height: self.height.min(other.height),
        }
    }

    /// Returns the maximum of each component of this size and another.
    pub fn max(self, other: Self) -> Self {
        Size {
            width: self.width.max(other.width),
            height: self.height.max(other.height),
        }
    }

    /// Expands this [`Size`] by the given amount.
    pub fn expand(self, other: impl Into<Size>) -> Self {
        let other = other.into();

        Size {
            width: self.width + other.width,
            height: self.height + other.height,
        }
    }

    /// Rotates the given [`Size`] and returns the minimum [`Size`]
    /// containing it.
    pub fn rotate(self, rotation: Radians) -> Size {
        let radians = f32::from(rotation);

        Size {
            width: (self.width * radians.cos()).abs()
                + (self.height * radians.sin()).abs(),
            height: (self.width * radians.sin()).abs()
                + (self.height * radians.cos()).abs(),
        }
    }
}

impl<T> From<[T; 2]> for Size<T> {
    fn from([width, height]: [T; 2]) -> Self {
        Size { width, height }
    }
}

impl<T> From<(T, T)> for Size<T> {
    fn from((width, height): (T, T)) -> Self {
        Self { width, height }
    }
}

impl<T> From<Vector<T>> for Size<T> {
    fn from(vector: Vector<T>) -> Self {
        Size {
            width: vector.x,
            height: vector.y,
        }
    }
}

impl<T> From<Size<T>> for [T; 2] {
    fn from(size: Size<T>) -> Self {
        [size.width, size.height]
    }
}

impl<T> From<Size<T>> for Vector<T> {
    fn from(size: Size<T>) -> Self {
        Vector::new(size.width, size.height)
    }
}

impl<T> std::ops::Sub for Size<T>
where
    T: std::ops::Sub<Output = T>,
{
    type Output = Size<T>;

    fn sub(self, rhs: Self) -> Self::Output {
        Size {
            width: self.width - rhs.width,
            height: self.height - rhs.height,
        }
    }
}

impl<T> std::ops::Mul<T> for Size<T>
where
    T: std::ops::Mul<Output = T> + Copy,
{
    type Output = Size<T>;

    fn mul(self, rhs: T) -> Self::Output {
        Size {
            width: self.width * rhs,
            height: self.height * rhs,
        }
    }
}

impl<T> std::ops::Mul<Vector<T>> for Size<T>
where
    T: std::ops::Mul<Output = T> + Copy,
{
    type Output = Size<T>;

    fn mul(self, scale: Vector<T>) -> Self::Output {
        Size {
            width: self.width * scale.x,
            height: self.height * scale.y,
        }
    }
}