iced_core/
angle.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
use crate::{Point, Rectangle, Vector};

use std::f32::consts::{FRAC_PI_2, PI};
use std::fmt::Display;
use std::ops::{Add, AddAssign, Div, Mul, RangeInclusive, Rem, Sub, SubAssign};

/// Degrees
#[derive(Debug, Copy, Clone, PartialEq, PartialOrd)]
pub struct Degrees(pub f32);

impl Degrees {
    /// The range of degrees of a circle.
    pub const RANGE: RangeInclusive<Self> = Self(0.0)..=Self(360.0);
}

impl PartialEq<f32> for Degrees {
    fn eq(&self, other: &f32) -> bool {
        self.0.eq(other)
    }
}

impl PartialOrd<f32> for Degrees {
    fn partial_cmp(&self, other: &f32) -> Option<std::cmp::Ordering> {
        self.0.partial_cmp(other)
    }
}

impl From<f32> for Degrees {
    fn from(degrees: f32) -> Self {
        Self(degrees)
    }
}

impl From<u8> for Degrees {
    fn from(degrees: u8) -> Self {
        Self(f32::from(degrees))
    }
}

impl From<Degrees> for f32 {
    fn from(degrees: Degrees) -> Self {
        degrees.0
    }
}

impl From<Degrees> for f64 {
    fn from(degrees: Degrees) -> Self {
        Self::from(degrees.0)
    }
}

impl Mul<f32> for Degrees {
    type Output = Degrees;

    fn mul(self, rhs: f32) -> Self::Output {
        Self(self.0 * rhs)
    }
}

impl num_traits::FromPrimitive for Degrees {
    fn from_i64(n: i64) -> Option<Self> {
        Some(Self(n as f32))
    }

    fn from_u64(n: u64) -> Option<Self> {
        Some(Self(n as f32))
    }

    fn from_f64(n: f64) -> Option<Self> {
        Some(Self(n as f32))
    }
}

/// Radians
#[derive(Debug, Copy, Clone, PartialEq, PartialOrd)]
pub struct Radians(pub f32);

impl Radians {
    /// The range of radians of a circle.
    pub const RANGE: RangeInclusive<Self> = Self(0.0)..=Self(2.0 * PI);

    /// The amount of radians in half a circle.
    pub const PI: Self = Self(PI);

    /// Calculates the line in which the angle intercepts the `bounds`.
    pub fn to_distance(&self, bounds: &Rectangle) -> (Point, Point) {
        let angle = self.0 - FRAC_PI_2;
        let r = Vector::new(f32::cos(angle), f32::sin(angle));

        let distance_to_rect = f32::max(
            f32::abs(r.x * bounds.width / 2.0),
            f32::abs(r.y * bounds.height / 2.0),
        );

        let start = bounds.center() - r * distance_to_rect;
        let end = bounds.center() + r * distance_to_rect;

        (start, end)
    }
}

impl From<Degrees> for Radians {
    fn from(degrees: Degrees) -> Self {
        Self(degrees.0 * PI / 180.0)
    }
}

impl From<f32> for Radians {
    fn from(radians: f32) -> Self {
        Self(radians)
    }
}

impl From<u8> for Radians {
    fn from(radians: u8) -> Self {
        Self(f32::from(radians))
    }
}

impl From<Radians> for f32 {
    fn from(radians: Radians) -> Self {
        radians.0
    }
}

impl From<Radians> for f64 {
    fn from(radians: Radians) -> Self {
        Self::from(radians.0)
    }
}

impl num_traits::FromPrimitive for Radians {
    fn from_i64(n: i64) -> Option<Self> {
        Some(Self(n as f32))
    }

    fn from_u64(n: u64) -> Option<Self> {
        Some(Self(n as f32))
    }

    fn from_f64(n: f64) -> Option<Self> {
        Some(Self(n as f32))
    }
}

impl Sub for Radians {
    type Output = Self;

    fn sub(self, rhs: Self) -> Self::Output {
        Self(self.0 - rhs.0)
    }
}

impl SubAssign for Radians {
    fn sub_assign(&mut self, rhs: Self) {
        self.0 = self.0 - rhs.0;
    }
}

impl Add for Radians {
    type Output = Self;

    fn add(self, rhs: Self) -> Self::Output {
        Self(self.0 + rhs.0)
    }
}

impl Add<Degrees> for Radians {
    type Output = Self;

    fn add(self, rhs: Degrees) -> Self::Output {
        Self(self.0 + rhs.0.to_radians())
    }
}

impl AddAssign for Radians {
    fn add_assign(&mut self, rhs: Radians) {
        self.0 = self.0 + rhs.0;
    }
}

impl Mul for Radians {
    type Output = Self;

    fn mul(self, rhs: Radians) -> Self::Output {
        Radians(self.0 * rhs.0)
    }
}

impl Mul<f32> for Radians {
    type Output = Self;

    fn mul(self, rhs: f32) -> Self::Output {
        Self(self.0 * rhs)
    }
}

impl Mul<Radians> for f32 {
    type Output = Radians;

    fn mul(self, rhs: Radians) -> Self::Output {
        Radians(self * rhs.0)
    }
}

impl Div<f32> for Radians {
    type Output = Self;

    fn div(self, rhs: f32) -> Self::Output {
        Radians(self.0 / rhs)
    }
}

impl Div for Radians {
    type Output = Self;

    fn div(self, rhs: Self) -> Self::Output {
        Self(self.0 / rhs.0)
    }
}

impl Rem for Radians {
    type Output = Self;

    fn rem(self, rhs: Self) -> Self::Output {
        Self(self.0 % rhs.0)
    }
}

impl PartialEq<f32> for Radians {
    fn eq(&self, other: &f32) -> bool {
        self.0.eq(other)
    }
}

impl PartialOrd<f32> for Radians {
    fn partial_cmp(&self, other: &f32) -> Option<std::cmp::Ordering> {
        self.0.partial_cmp(other)
    }
}

impl Display for Radians {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{} rad", self.0)
    }
}