iced_core/
angle.rs

1use crate::{Point, Rectangle, Vector};
2
3use std::f32::consts::{FRAC_PI_2, PI};
4use std::fmt::Display;
5use std::ops::{Add, AddAssign, Div, Mul, RangeInclusive, Rem, Sub, SubAssign};
6
7/// Degrees
8#[derive(Debug, Copy, Clone, PartialEq, PartialOrd)]
9pub struct Degrees(pub f32);
10
11impl Degrees {
12    /// The range of degrees of a circle.
13    pub const RANGE: RangeInclusive<Self> = Self(0.0)..=Self(360.0);
14}
15
16impl PartialEq<f32> for Degrees {
17    fn eq(&self, other: &f32) -> bool {
18        self.0.eq(other)
19    }
20}
21
22impl PartialOrd<f32> for Degrees {
23    fn partial_cmp(&self, other: &f32) -> Option<std::cmp::Ordering> {
24        self.0.partial_cmp(other)
25    }
26}
27
28impl From<f32> for Degrees {
29    fn from(degrees: f32) -> Self {
30        Self(degrees)
31    }
32}
33
34impl From<u8> for Degrees {
35    fn from(degrees: u8) -> Self {
36        Self(f32::from(degrees))
37    }
38}
39
40impl From<Degrees> for f32 {
41    fn from(degrees: Degrees) -> Self {
42        degrees.0
43    }
44}
45
46impl From<Degrees> for f64 {
47    fn from(degrees: Degrees) -> Self {
48        Self::from(degrees.0)
49    }
50}
51
52impl Mul<f32> for Degrees {
53    type Output = Degrees;
54
55    fn mul(self, rhs: f32) -> Self::Output {
56        Self(self.0 * rhs)
57    }
58}
59
60impl num_traits::FromPrimitive for Degrees {
61    fn from_i64(n: i64) -> Option<Self> {
62        Some(Self(n as f32))
63    }
64
65    fn from_u64(n: u64) -> Option<Self> {
66        Some(Self(n as f32))
67    }
68
69    fn from_f64(n: f64) -> Option<Self> {
70        Some(Self(n as f32))
71    }
72}
73
74/// Radians
75#[derive(Debug, Copy, Clone, PartialEq, PartialOrd)]
76pub struct Radians(pub f32);
77
78impl Radians {
79    /// The range of radians of a circle.
80    pub const RANGE: RangeInclusive<Self> = Self(0.0)..=Self(2.0 * PI);
81
82    /// The amount of radians in half a circle.
83    pub const PI: Self = Self(PI);
84
85    /// Calculates the line in which the angle intercepts the `bounds`.
86    pub fn to_distance(&self, bounds: &Rectangle) -> (Point, Point) {
87        let angle = self.0 - FRAC_PI_2;
88        let r = Vector::new(f32::cos(angle), f32::sin(angle));
89
90        let distance_to_rect = f32::max(
91            f32::abs(r.x * bounds.width / 2.0),
92            f32::abs(r.y * bounds.height / 2.0),
93        );
94
95        let start = bounds.center() - r * distance_to_rect;
96        let end = bounds.center() + r * distance_to_rect;
97
98        (start, end)
99    }
100}
101
102impl From<Degrees> for Radians {
103    fn from(degrees: Degrees) -> Self {
104        Self(degrees.0 * PI / 180.0)
105    }
106}
107
108impl From<f32> for Radians {
109    fn from(radians: f32) -> Self {
110        Self(radians)
111    }
112}
113
114impl From<u8> for Radians {
115    fn from(radians: u8) -> Self {
116        Self(f32::from(radians))
117    }
118}
119
120impl From<Radians> for f32 {
121    fn from(radians: Radians) -> Self {
122        radians.0
123    }
124}
125
126impl From<Radians> for f64 {
127    fn from(radians: Radians) -> Self {
128        Self::from(radians.0)
129    }
130}
131
132impl num_traits::FromPrimitive for Radians {
133    fn from_i64(n: i64) -> Option<Self> {
134        Some(Self(n as f32))
135    }
136
137    fn from_u64(n: u64) -> Option<Self> {
138        Some(Self(n as f32))
139    }
140
141    fn from_f64(n: f64) -> Option<Self> {
142        Some(Self(n as f32))
143    }
144}
145
146impl Sub for Radians {
147    type Output = Self;
148
149    fn sub(self, rhs: Self) -> Self::Output {
150        Self(self.0 - rhs.0)
151    }
152}
153
154impl SubAssign for Radians {
155    fn sub_assign(&mut self, rhs: Self) {
156        self.0 = self.0 - rhs.0;
157    }
158}
159
160impl Add for Radians {
161    type Output = Self;
162
163    fn add(self, rhs: Self) -> Self::Output {
164        Self(self.0 + rhs.0)
165    }
166}
167
168impl Add<Degrees> for Radians {
169    type Output = Self;
170
171    fn add(self, rhs: Degrees) -> Self::Output {
172        Self(self.0 + rhs.0.to_radians())
173    }
174}
175
176impl AddAssign for Radians {
177    fn add_assign(&mut self, rhs: Radians) {
178        self.0 = self.0 + rhs.0;
179    }
180}
181
182impl Mul for Radians {
183    type Output = Self;
184
185    fn mul(self, rhs: Radians) -> Self::Output {
186        Radians(self.0 * rhs.0)
187    }
188}
189
190impl Mul<f32> for Radians {
191    type Output = Self;
192
193    fn mul(self, rhs: f32) -> Self::Output {
194        Self(self.0 * rhs)
195    }
196}
197
198impl Mul<Radians> for f32 {
199    type Output = Radians;
200
201    fn mul(self, rhs: Radians) -> Self::Output {
202        Radians(self * rhs.0)
203    }
204}
205
206impl Div<f32> for Radians {
207    type Output = Self;
208
209    fn div(self, rhs: f32) -> Self::Output {
210        Radians(self.0 / rhs)
211    }
212}
213
214impl Div for Radians {
215    type Output = Self;
216
217    fn div(self, rhs: Self) -> Self::Output {
218        Self(self.0 / rhs.0)
219    }
220}
221
222impl Rem for Radians {
223    type Output = Self;
224
225    fn rem(self, rhs: Self) -> Self::Output {
226        Self(self.0 % rhs.0)
227    }
228}
229
230impl PartialEq<f32> for Radians {
231    fn eq(&self, other: &f32) -> bool {
232        self.0.eq(other)
233    }
234}
235
236impl PartialOrd<f32> for Radians {
237    fn partial_cmp(&self, other: &f32) -> Option<std::cmp::Ordering> {
238        self.0.partial_cmp(other)
239    }
240}
241
242impl Display for Radians {
243    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
244        write!(f, "{} rad", self.0)
245    }
246}