Struct Vector3D
pub struct Vector3D<T, U> {
pub x: T,
pub y: T,
pub z: T,
/* private fields */
}Expand description
A 3d Vector tagged with a unit.
Fields§
§x: TThe x (traditionally, horizontal) coordinate.
y: TThe y (traditionally, vertical) coordinate.
z: TThe z (traditionally, depth) coordinate.
Implementations§
§impl<T, U> Vector3D<T, U>
impl<T, U> Vector3D<T, U>
pub fn splat(v: T) -> Vector3D<T, U>where
T: Clone,
pub fn splat(v: T) -> Vector3D<T, U>where
T: Clone,
Constructor setting all components to the same value.
pub fn from_lengths(
x: Length<T, U>,
y: Length<T, U>,
z: Length<T, U>,
) -> Vector3D<T, U>
pub fn from_lengths( x: Length<T, U>, y: Length<T, U>, z: Length<T, U>, ) -> Vector3D<T, U>
Constructor taking properly Lengths instead of scalar values.
pub fn from_untyped(p: Vector3D<T, UnknownUnit>) -> Vector3D<T, U>
pub fn from_untyped(p: Vector3D<T, UnknownUnit>) -> Vector3D<T, U>
Tag a unitless value with units.
pub fn map<V, F>(self, f: F) -> Vector3D<V, U>where
F: FnMut(T) -> V,
pub fn map<V, F>(self, f: F) -> Vector3D<V, U>where
F: FnMut(T) -> V,
Apply the function f to each component of this vector.
§Example
This may be used to perform unusual arithmetic which is not already offered as methods.
use euclid::default::Vector3D;
let p = Vector3D::<u32>::new(5, 11, 15);
assert_eq!(p.map(|coord| coord.saturating_sub(10)), Vector3D::new(0, 1, 5));pub fn zip<V, F>(self, rhs: Vector3D<T, U>, f: F) -> Vector3D<V, U>where
F: FnMut(T, T) -> V,
pub fn zip<V, F>(self, rhs: Vector3D<T, U>, f: F) -> Vector3D<V, U>where
F: FnMut(T, T) -> V,
Apply the function f to each pair of components of this point and rhs.
§Example
This may be used to perform unusual arithmetic which is not already offered as methods.
use euclid::default::Vector3D;
let a: Vector3D<u8> = Vector3D::new(50, 200, 10);
let b: Vector3D<u8> = Vector3D::new(100, 100, 0);
assert_eq!(a.zip(b, u8::saturating_add), Vector3D::new(150, 255, 10));pub fn abs(self) -> Vector3D<T, U>where
T: Signed,
pub fn abs(self) -> Vector3D<T, U>where
T: Signed,
Computes the vector with absolute values of each component.
§Example
enum U {}
assert_eq!(vec3::<_, U>(-1, 0, 2).abs(), vec3(1, 0, 2));
let vec = vec3::<_, U>(f32::NAN, 0.0, -f32::MAX).abs();
assert!(vec.x.is_nan());
assert_eq!(vec.y, 0.0);
assert_eq!(vec.z, f32::MAX);§Panics
The behavior for each component follows the scalar type’s implementation of
num_traits::Signed::abs.
§impl<T, U> Vector3D<T, U>where
T: Copy,
impl<T, U> Vector3D<T, U>where
T: Copy,
pub fn component_mul(self, other: Vector3D<T, U>) -> Vector3D<T, U>where
T: Mul<Output = T>,
pub fn component_mul(self, other: Vector3D<T, U>) -> Vector3D<T, U>where
T: Mul<Output = T>,
Returns the component-wise multiplication of the two vectors.
pub fn component_div(self, other: Vector3D<T, U>) -> Vector3D<T, U>where
T: Div<Output = T>,
pub fn component_div(self, other: Vector3D<T, U>) -> Vector3D<T, U>where
T: Div<Output = T>,
Returns the component-wise division of the two vectors.
pub fn to_point(self) -> Point3D<T, U>
pub fn to_point(self) -> Point3D<T, U>
Cast this vector into a point.
Equivalent to adding this vector to the origin.
pub fn to_array_4d(self) -> [T; 4]where
T: Zero,
pub fn to_array_4d(self) -> [T; 4]where
T: Zero,
Cast into an array with x, y, z and 0.
pub fn to_tuple_4d(self) -> (T, T, T, T)where
T: Zero,
pub fn to_tuple_4d(self) -> (T, T, T, T)where
T: Zero,
Cast into a tuple with x, y, z and 0.
pub fn to_untyped(self) -> Vector3D<T, UnknownUnit>
pub fn to_untyped(self) -> Vector3D<T, UnknownUnit>
Drop the units, preserving only the numeric value.
pub fn round(self) -> Vector3D<T, U>where
T: Round,
pub fn round(self) -> Vector3D<T, U>where
T: Round,
Rounds each component to the nearest integer value.
This behavior is preserved for negative values (unlike the basic cast).
enum Mm {}
assert_eq!(vec3::<_, Mm>(-0.1, -0.8, 0.4).round(), vec3::<_, Mm>(0.0, -1.0, 0.0))pub fn ceil(self) -> Vector3D<T, U>where
T: Ceil,
pub fn ceil(self) -> Vector3D<T, U>where
T: Ceil,
Rounds each component to the smallest integer equal or greater than the original value.
This behavior is preserved for negative values (unlike the basic cast).
enum Mm {}
assert_eq!(vec3::<_, Mm>(-0.1, -0.8, 0.4).ceil(), vec3::<_, Mm>(0.0, 0.0, 1.0))pub fn floor(self) -> Vector3D<T, U>where
T: Floor,
pub fn floor(self) -> Vector3D<T, U>where
T: Floor,
Rounds each component to the biggest integer equal or lower than the original value.
This behavior is preserved for negative values (unlike the basic cast).
enum Mm {}
assert_eq!(vec3::<_, Mm>(-0.1, -0.8, 0.4).floor(), vec3::<_, Mm>(-1.0, -1.0, 0.0))pub fn to_transform(self) -> Transform3D<T, U, U>
pub fn to_transform(self) -> Transform3D<T, U, U>
Creates translation by this vector in vector units
§impl<T, U> Vector3D<T, U>
impl<T, U> Vector3D<T, U>
pub fn square_length(self) -> T
pub fn square_length(self) -> T
Returns the vector’s length squared.
pub fn project_onto_vector(self, onto: Vector3D<T, U>) -> Vector3D<T, U>
pub fn project_onto_vector(self, onto: Vector3D<T, U>) -> Vector3D<T, U>
Returns this vector projected onto another one.
Projecting onto a nil vector will cause a division by zero.
§impl<T, U> Vector3D<T, U>where
T: Float,
impl<T, U> Vector3D<T, U>where
T: Float,
pub fn robust_normalize(self) -> Vector3D<T, U>
pub fn robust_normalize(self) -> Vector3D<T, U>
Return the normalized vector even if the length is larger than the max value of Float.
§impl<T, U> Vector3D<T, U>where
T: Real,
impl<T, U> Vector3D<T, U>where
T: Real,
pub fn angle_to(self, other: Vector3D<T, U>) -> Angle<T>where
T: Trig,
pub fn angle_to(self, other: Vector3D<T, U>) -> Angle<T>where
T: Trig,
Returns the positive angle between this vector and another vector.
The returned angle is between 0 and PI.
pub fn length(self) -> T
pub fn length(self) -> T
Returns the vector length.
pub fn try_normalize(self) -> Option<Vector3D<T, U>>
pub fn try_normalize(self) -> Option<Vector3D<T, U>>
Returns the vector with length of one unit.
Unlike Vector2D::normalize, this returns None in the case that the
length of the vector is zero.
pub fn with_max_length(self, max_length: T) -> Vector3D<T, U>
pub fn with_max_length(self, max_length: T) -> Vector3D<T, U>
Return this vector capped to a maximum length.
pub fn with_min_length(self, min_length: T) -> Vector3D<T, U>
pub fn with_min_length(self, min_length: T) -> Vector3D<T, U>
Return this vector with a minimum length applied.
pub fn clamp_length(self, min: T, max: T) -> Vector3D<T, U>
pub fn clamp_length(self, min: T, max: T) -> Vector3D<T, U>
Return this vector with minimum and maximum lengths applied.
§impl<T, U> Vector3D<T, U>
impl<T, U> Vector3D<T, U>
pub fn lerp(self, other: Vector3D<T, U>, t: T) -> Vector3D<T, U>
pub fn lerp(self, other: Vector3D<T, U>, t: T) -> Vector3D<T, U>
Linearly interpolate each component between this vector and another vector.
§Example
use euclid::vec3;
use euclid::default::Vector3D;
let from: Vector3D<_> = vec3(0.0, 10.0, -1.0);
let to: Vector3D<_> = vec3(8.0, -4.0, 0.0);
assert_eq!(from.lerp(to, -1.0), vec3(-8.0, 24.0, -2.0));
assert_eq!(from.lerp(to, 0.0), vec3( 0.0, 10.0, -1.0));
assert_eq!(from.lerp(to, 0.5), vec3( 4.0, 3.0, -0.5));
assert_eq!(from.lerp(to, 1.0), vec3( 8.0, -4.0, 0.0));
assert_eq!(from.lerp(to, 2.0), vec3(16.0, -18.0, 1.0));§impl<T, U> Vector3D<T, U>where
T: PartialOrd,
impl<T, U> Vector3D<T, U>where
T: PartialOrd,
pub fn min(self, other: Vector3D<T, U>) -> Vector3D<T, U>
pub fn min(self, other: Vector3D<T, U>) -> Vector3D<T, U>
Returns the vector each component of which are minimum of this vector and another.
pub fn max(self, other: Vector3D<T, U>) -> Vector3D<T, U>
pub fn max(self, other: Vector3D<T, U>) -> Vector3D<T, U>
Returns the vector each component of which are maximum of this vector and another.
pub fn clamp(self, start: Vector3D<T, U>, end: Vector3D<T, U>) -> Vector3D<T, U>where
T: Copy,
pub fn clamp(self, start: Vector3D<T, U>, end: Vector3D<T, U>) -> Vector3D<T, U>where
T: Copy,
Returns the vector each component of which is clamped by corresponding
components of start and end.
Shortcut for self.max(start).min(end).
pub fn greater_than(self, other: Vector3D<T, U>) -> BoolVector3D
pub fn greater_than(self, other: Vector3D<T, U>) -> BoolVector3D
Returns vector with results of “greater than” operation on each component.
pub fn lower_than(self, other: Vector3D<T, U>) -> BoolVector3D
pub fn lower_than(self, other: Vector3D<T, U>) -> BoolVector3D
Returns vector with results of “lower than” operation on each component.
§impl<T, U> Vector3D<T, U>where
T: PartialEq,
impl<T, U> Vector3D<T, U>where
T: PartialEq,
pub fn equal(self, other: Vector3D<T, U>) -> BoolVector3D
pub fn equal(self, other: Vector3D<T, U>) -> BoolVector3D
Returns vector with results of “equal” operation on each component.
pub fn not_equal(self, other: Vector3D<T, U>) -> BoolVector3D
pub fn not_equal(self, other: Vector3D<T, U>) -> BoolVector3D
Returns vector with results of “not equal” operation on each component.
§impl<T, U> Vector3D<T, U>
impl<T, U> Vector3D<T, U>
pub fn cast<NewT>(self) -> Vector3D<NewT, U>where
NewT: NumCast,
pub fn cast<NewT>(self) -> Vector3D<NewT, U>where
NewT: NumCast,
Cast from one numeric representation to another, preserving the units.
When casting from floating vector to integer coordinates, the decimals are truncated
as one would expect from a simple cast, but this behavior does not always make sense
geometrically. Consider using round(), ceil() or floor() before casting.
pub fn try_cast<NewT>(self) -> Option<Vector3D<NewT, U>>where
NewT: NumCast,
pub fn try_cast<NewT>(self) -> Option<Vector3D<NewT, U>>where
NewT: NumCast,
Fallible cast from one numeric representation to another, preserving the units.
When casting from floating vector to integer coordinates, the decimals are truncated
as one would expect from a simple cast, but this behavior does not always make sense
geometrically. Consider using round(), ceil() or floor() before casting.
pub fn to_usize(self) -> Vector3D<usize, U>
pub fn to_usize(self) -> Vector3D<usize, U>
Cast into an usize vector, truncating decimals if any.
When casting from floating vector vectors, it is worth considering whether
to round(), ceil() or floor() before the cast in order to obtain
the desired conversion behavior.
pub fn to_u32(self) -> Vector3D<u32, U>
pub fn to_u32(self) -> Vector3D<u32, U>
Cast into an u32 vector, truncating decimals if any.
When casting from floating vector vectors, it is worth considering whether
to round(), ceil() or floor() before the cast in order to obtain
the desired conversion behavior.
Trait Implementations§
§impl<T, U> AddAssign<Vector3D<T, U>> for Point3D<T, U>
impl<T, U> AddAssign<Vector3D<T, U>> for Point3D<T, U>
§fn add_assign(&mut self, other: Vector3D<T, U>)
fn add_assign(&mut self, other: Vector3D<T, U>)
+= operation. Read more§impl<T, U> AddAssign for Vector3D<T, U>
impl<T, U> AddAssign for Vector3D<T, U>
§fn add_assign(&mut self, other: Vector3D<T, U>)
fn add_assign(&mut self, other: Vector3D<T, U>)
+= operation. Read more§impl<T, U> ApproxEq<Vector3D<T, U>> for Vector3D<T, U>where
T: ApproxEq<T>,
impl<T, U> ApproxEq<Vector3D<T, U>> for Vector3D<T, U>where
T: ApproxEq<T>,
§fn approx_epsilon() -> Vector3D<T, U>
fn approx_epsilon() -> Vector3D<T, U>
§fn approx_eq_eps(&self, other: &Vector3D<T, U>, eps: &Vector3D<T, U>) -> bool
fn approx_eq_eps(&self, other: &Vector3D<T, U>, eps: &Vector3D<T, U>) -> bool
true if this object is approximately equal to the other one, using
a provided epsilon value.§fn approx_eq(&self, other: &Self) -> bool
fn approx_eq(&self, other: &Self) -> bool
true if this object is approximately equal to the other one, using
the approx_epsilon epsilon value.§impl<T, U> Ceil for Vector3D<T, U>where
T: Ceil,
impl<T, U> Ceil for Vector3D<T, U>where
T: Ceil,
§fn ceil(self) -> Vector3D<T, U>
fn ceil(self) -> Vector3D<T, U>
See Vector3D::ceil.
§impl<T, U> DivAssign<Scale<T, U, U>> for Vector3D<T, U>
impl<T, U> DivAssign<Scale<T, U, U>> for Vector3D<T, U>
§fn div_assign(&mut self, scale: Scale<T, U, U>)
fn div_assign(&mut self, scale: Scale<T, U, U>)
/= operation. Read more§impl<T, U> DivAssign<T> for Vector3D<T, U>
impl<T, U> DivAssign<T> for Vector3D<T, U>
§fn div_assign(&mut self, scale: T)
fn div_assign(&mut self, scale: T)
/= operation. Read more§impl<T, U> Floor for Vector3D<T, U>where
T: Floor,
impl<T, U> Floor for Vector3D<T, U>where
T: Floor,
§fn floor(self) -> Vector3D<T, U>
fn floor(self) -> Vector3D<T, U>
See Vector3D::floor.
§impl<T, Src, Dst> From<Translation3D<T, Src, Dst>> for Vector3D<T, Src>
impl<T, Src, Dst> From<Translation3D<T, Src, Dst>> for Vector3D<T, Src>
§fn from(t: Translation3D<T, Src, Dst>) -> Vector3D<T, Src>
fn from(t: Translation3D<T, Src, Dst>) -> Vector3D<T, Src>
§impl<T, Src, Dst> From<Vector3D<T, Dst>> for RigidTransform3D<T, Src, Dst>
impl<T, Src, Dst> From<Vector3D<T, Dst>> for RigidTransform3D<T, Src, Dst>
§fn from(t: Vector3D<T, Dst>) -> RigidTransform3D<T, Src, Dst>
fn from(t: Vector3D<T, Dst>) -> RigidTransform3D<T, Src, Dst>
§impl<T, Src, Dst> From<Vector3D<T, Src>> for Translation3D<T, Src, Dst>
impl<T, Src, Dst> From<Vector3D<T, Src>> for Translation3D<T, Src, Dst>
§fn from(v: Vector3D<T, Src>) -> Translation3D<T, Src, Dst>
fn from(v: Vector3D<T, Src>) -> Translation3D<T, Src, Dst>
§impl<T, U> From<Vector3D<T, U>> for HomogeneousVector<T, U>where
T: Zero,
impl<T, U> From<Vector3D<T, U>> for HomogeneousVector<T, U>where
T: Zero,
§fn from(v: Vector3D<T, U>) -> HomogeneousVector<T, U>
fn from(v: Vector3D<T, U>) -> HomogeneousVector<T, U>
§impl<T, U> MulAssign<Scale<T, U, U>> for Vector3D<T, U>
impl<T, U> MulAssign<Scale<T, U, U>> for Vector3D<T, U>
§fn mul_assign(&mut self, scale: Scale<T, U, U>)
fn mul_assign(&mut self, scale: Scale<T, U, U>)
*= operation. Read more§impl<T, U> MulAssign<T> for Vector3D<T, U>
impl<T, U> MulAssign<T> for Vector3D<T, U>
§fn mul_assign(&mut self, scale: T)
fn mul_assign(&mut self, scale: T)
*= operation. Read more§impl<T, U> Round for Vector3D<T, U>where
T: Round,
impl<T, U> Round for Vector3D<T, U>where
T: Round,
§fn round(self) -> Vector3D<T, U>
fn round(self) -> Vector3D<T, U>
See Vector3D::round.
§impl<T, U> SubAssign<Vector3D<T, U>> for Point3D<T, U>
impl<T, U> SubAssign<Vector3D<T, U>> for Point3D<T, U>
§fn sub_assign(&mut self, other: Vector3D<T, U>)
fn sub_assign(&mut self, other: Vector3D<T, U>)
-= operation. Read more§impl<T, U> SubAssign for Vector3D<T, U>
impl<T, U> SubAssign for Vector3D<T, U>
§fn sub_assign(&mut self, other: Vector3D<T, U>)
fn sub_assign(&mut self, other: Vector3D<T, U>)
-= operation. Read moreimpl<T, U> Copy for Vector3D<T, U>where
T: Copy,
impl<T, U> Eq for Vector3D<T, U>where
T: Eq,
Auto Trait Implementations§
impl<T, U> Freeze for Vector3D<T, U>where
T: Freeze,
impl<T, U> RefUnwindSafe for Vector3D<T, U>where
T: RefUnwindSafe,
U: RefUnwindSafe,
impl<T, U> Send for Vector3D<T, U>
impl<T, U> Sync for Vector3D<T, U>
impl<T, U> Unpin for Vector3D<T, U>
impl<T, U> UnwindSafe for Vector3D<T, U>where
T: UnwindSafe,
U: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can
then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be
further downcast into Rc<ConcreteType> where ConcreteType implements Trait.§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
&Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &Any’s vtable from &Trait’s.§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
&mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &mut Any’s vtable from &mut Trait’s.§impl<T> DowncastSync for T
impl<T> DowncastSync for T
§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
key and return true if they are equal.§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<State, Message> IntoBoot<State, Message> for State
impl<State, Message> IntoBoot<State, Message> for State
Source§fn into_boot(self) -> (State, Task<Message>)
fn into_boot(self) -> (State, Task<Message>)
Application.Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read more§impl<T> NoneValue for Twhere
T: Default,
impl<T> NoneValue for Twhere
T: Default,
type NoneType = T
§fn null_value() -> T
fn null_value() -> T
§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<R, P> ReadPrimitive<R> for P
impl<R, P> ReadPrimitive<R> for P
Source§fn read_from_little_endian(read: &mut R) -> Result<Self, Error>
fn read_from_little_endian(read: &mut R) -> Result<Self, Error>
ReadEndian::read_from_little_endian().