Struct Vector3D
#[repr(C)]pub struct Vector3D<T, U> {
pub x: T,
pub y: T,
pub z: T,
/* private fields */
}
geometry
only.Expand description
A 3d Vector tagged with a unit.
Fields§
§x: T
The x
(traditionally, horizontal) coordinate.
y: T
The y
(traditionally, vertical) coordinate.
z: T
The z
(traditionally, depth) coordinate.
Implementations§
§impl<T, U> Vector3D<T, U>
impl<T, U> Vector3D<T, U>
pub fn splat(v: T) -> Vector3D<T, U>where
T: Clone,
pub fn splat(v: T) -> Vector3D<T, U>where
T: Clone,
Constructor setting all components to the same value.
pub fn from_lengths(
x: Length<T, U>,
y: Length<T, U>,
z: Length<T, U>,
) -> Vector3D<T, U>
pub fn from_lengths( x: Length<T, U>, y: Length<T, U>, z: Length<T, U>, ) -> Vector3D<T, U>
Constructor taking properly Lengths instead of scalar values.
pub fn from_untyped(p: Vector3D<T, UnknownUnit>) -> Vector3D<T, U>
pub fn from_untyped(p: Vector3D<T, UnknownUnit>) -> Vector3D<T, U>
Tag a unitless value with units.
pub fn map<V, F>(self, f: F) -> Vector3D<V, U>where
F: FnMut(T) -> V,
pub fn map<V, F>(self, f: F) -> Vector3D<V, U>where
F: FnMut(T) -> V,
Apply the function f
to each component of this vector.
§Example
This may be used to perform unusual arithmetic which is not already offered as methods.
use euclid::default::Vector3D;
let p = Vector3D::<u32>::new(5, 11, 15);
assert_eq!(p.map(|coord| coord.saturating_sub(10)), Vector3D::new(0, 1, 5));
pub fn zip<V, F>(self, rhs: Vector3D<T, U>, f: F) -> Vector3D<V, U>where
F: FnMut(T, T) -> V,
pub fn zip<V, F>(self, rhs: Vector3D<T, U>, f: F) -> Vector3D<V, U>where
F: FnMut(T, T) -> V,
Apply the function f
to each pair of components of this point and rhs
.
§Example
This may be used to perform unusual arithmetic which is not already offered as methods.
use euclid::default::Vector3D;
let a: Vector3D<u8> = Vector3D::new(50, 200, 10);
let b: Vector3D<u8> = Vector3D::new(100, 100, 0);
assert_eq!(a.zip(b, u8::saturating_add), Vector3D::new(150, 255, 10));
pub fn abs(self) -> Vector3D<T, U>where
T: Signed,
pub fn abs(self) -> Vector3D<T, U>where
T: Signed,
Computes the vector with absolute values of each component.
§Example
enum U {}
assert_eq!(vec3::<_, U>(-1, 0, 2).abs(), vec3(1, 0, 2));
let vec = vec3::<_, U>(f32::NAN, 0.0, -f32::MAX).abs();
assert!(vec.x.is_nan());
assert_eq!(vec.y, 0.0);
assert_eq!(vec.z, f32::MAX);
§Panics
The behavior for each component follows the scalar type’s implementation of
num_traits::Signed::abs
.
§impl<T, U> Vector3D<T, U>where
T: Copy,
impl<T, U> Vector3D<T, U>where
T: Copy,
pub fn component_mul(self, other: Vector3D<T, U>) -> Vector3D<T, U>where
T: Mul<Output = T>,
pub fn component_mul(self, other: Vector3D<T, U>) -> Vector3D<T, U>where
T: Mul<Output = T>,
Returns the component-wise multiplication of the two vectors.
pub fn component_div(self, other: Vector3D<T, U>) -> Vector3D<T, U>where
T: Div<Output = T>,
pub fn component_div(self, other: Vector3D<T, U>) -> Vector3D<T, U>where
T: Div<Output = T>,
Returns the component-wise division of the two vectors.
pub fn to_point(self) -> Point3D<T, U>
pub fn to_point(self) -> Point3D<T, U>
Cast this vector into a point.
Equivalent to adding this vector to the origin.
pub fn to_array_4d(self) -> [T; 4]where
T: Zero,
pub fn to_array_4d(self) -> [T; 4]where
T: Zero,
Cast into an array with x, y, z and 0.
pub fn to_tuple_4d(self) -> (T, T, T, T)where
T: Zero,
pub fn to_tuple_4d(self) -> (T, T, T, T)where
T: Zero,
Cast into a tuple with x, y, z and 0.
pub fn to_untyped(self) -> Vector3D<T, UnknownUnit>
pub fn to_untyped(self) -> Vector3D<T, UnknownUnit>
Drop the units, preserving only the numeric value.
pub fn round(self) -> Vector3D<T, U>where
T: Round,
pub fn round(self) -> Vector3D<T, U>where
T: Round,
Rounds each component to the nearest integer value.
This behavior is preserved for negative values (unlike the basic cast).
enum Mm {}
assert_eq!(vec3::<_, Mm>(-0.1, -0.8, 0.4).round(), vec3::<_, Mm>(0.0, -1.0, 0.0))
pub fn ceil(self) -> Vector3D<T, U>where
T: Ceil,
pub fn ceil(self) -> Vector3D<T, U>where
T: Ceil,
Rounds each component to the smallest integer equal or greater than the original value.
This behavior is preserved for negative values (unlike the basic cast).
enum Mm {}
assert_eq!(vec3::<_, Mm>(-0.1, -0.8, 0.4).ceil(), vec3::<_, Mm>(0.0, 0.0, 1.0))
pub fn floor(self) -> Vector3D<T, U>where
T: Floor,
pub fn floor(self) -> Vector3D<T, U>where
T: Floor,
Rounds each component to the biggest integer equal or lower than the original value.
This behavior is preserved for negative values (unlike the basic cast).
enum Mm {}
assert_eq!(vec3::<_, Mm>(-0.1, -0.8, 0.4).floor(), vec3::<_, Mm>(-1.0, -1.0, 0.0))
pub fn to_transform(self) -> Transform3D<T, U, U>
pub fn to_transform(self) -> Transform3D<T, U, U>
Creates translation by this vector in vector units
§impl<T, U> Vector3D<T, U>
impl<T, U> Vector3D<T, U>
pub fn square_length(self) -> T
pub fn square_length(self) -> T
Returns the vector’s length squared.
pub fn project_onto_vector(self, onto: Vector3D<T, U>) -> Vector3D<T, U>
pub fn project_onto_vector(self, onto: Vector3D<T, U>) -> Vector3D<T, U>
Returns this vector projected onto another one.
Projecting onto a nil vector will cause a division by zero.
§impl<T, U> Vector3D<T, U>where
T: Float,
impl<T, U> Vector3D<T, U>where
T: Float,
pub fn robust_normalize(self) -> Vector3D<T, U>
pub fn robust_normalize(self) -> Vector3D<T, U>
Return the normalized vector even if the length is larger than the max value of Float.
§impl<T, U> Vector3D<T, U>where
T: Real,
impl<T, U> Vector3D<T, U>where
T: Real,
pub fn angle_to(self, other: Vector3D<T, U>) -> Angle<T>where
T: Trig,
pub fn angle_to(self, other: Vector3D<T, U>) -> Angle<T>where
T: Trig,
Returns the positive angle between this vector and another vector.
The returned angle is between 0 and PI.
pub fn length(self) -> T
pub fn length(self) -> T
Returns the vector length.
pub fn try_normalize(self) -> Option<Vector3D<T, U>>
pub fn try_normalize(self) -> Option<Vector3D<T, U>>
Returns the vector with length of one unit.
Unlike Vector2D::normalize
, this returns None
in the case that the
length of the vector is zero.
pub fn with_max_length(self, max_length: T) -> Vector3D<T, U>
pub fn with_max_length(self, max_length: T) -> Vector3D<T, U>
Return this vector capped to a maximum length.
pub fn with_min_length(self, min_length: T) -> Vector3D<T, U>
pub fn with_min_length(self, min_length: T) -> Vector3D<T, U>
Return this vector with a minimum length applied.
pub fn clamp_length(self, min: T, max: T) -> Vector3D<T, U>
pub fn clamp_length(self, min: T, max: T) -> Vector3D<T, U>
Return this vector with minimum and maximum lengths applied.
§impl<T, U> Vector3D<T, U>
impl<T, U> Vector3D<T, U>
pub fn lerp(self, other: Vector3D<T, U>, t: T) -> Vector3D<T, U>
pub fn lerp(self, other: Vector3D<T, U>, t: T) -> Vector3D<T, U>
Linearly interpolate each component between this vector and another vector.
§Example
use euclid::vec3;
use euclid::default::Vector3D;
let from: Vector3D<_> = vec3(0.0, 10.0, -1.0);
let to: Vector3D<_> = vec3(8.0, -4.0, 0.0);
assert_eq!(from.lerp(to, -1.0), vec3(-8.0, 24.0, -2.0));
assert_eq!(from.lerp(to, 0.0), vec3( 0.0, 10.0, -1.0));
assert_eq!(from.lerp(to, 0.5), vec3( 4.0, 3.0, -0.5));
assert_eq!(from.lerp(to, 1.0), vec3( 8.0, -4.0, 0.0));
assert_eq!(from.lerp(to, 2.0), vec3(16.0, -18.0, 1.0));
§impl<T, U> Vector3D<T, U>where
T: PartialOrd,
impl<T, U> Vector3D<T, U>where
T: PartialOrd,
pub fn min(self, other: Vector3D<T, U>) -> Vector3D<T, U>
pub fn min(self, other: Vector3D<T, U>) -> Vector3D<T, U>
Returns the vector each component of which are minimum of this vector and another.
pub fn max(self, other: Vector3D<T, U>) -> Vector3D<T, U>
pub fn max(self, other: Vector3D<T, U>) -> Vector3D<T, U>
Returns the vector each component of which are maximum of this vector and another.
pub fn clamp(self, start: Vector3D<T, U>, end: Vector3D<T, U>) -> Vector3D<T, U>where
T: Copy,
pub fn clamp(self, start: Vector3D<T, U>, end: Vector3D<T, U>) -> Vector3D<T, U>where
T: Copy,
Returns the vector each component of which is clamped by corresponding
components of start
and end
.
Shortcut for self.max(start).min(end)
.
pub fn greater_than(self, other: Vector3D<T, U>) -> BoolVector3D
pub fn greater_than(self, other: Vector3D<T, U>) -> BoolVector3D
Returns vector with results of “greater than” operation on each component.
pub fn lower_than(self, other: Vector3D<T, U>) -> BoolVector3D
pub fn lower_than(self, other: Vector3D<T, U>) -> BoolVector3D
Returns vector with results of “lower than” operation on each component.
§impl<T, U> Vector3D<T, U>where
T: PartialEq,
impl<T, U> Vector3D<T, U>where
T: PartialEq,
pub fn equal(self, other: Vector3D<T, U>) -> BoolVector3D
pub fn equal(self, other: Vector3D<T, U>) -> BoolVector3D
Returns vector with results of “equal” operation on each component.
pub fn not_equal(self, other: Vector3D<T, U>) -> BoolVector3D
pub fn not_equal(self, other: Vector3D<T, U>) -> BoolVector3D
Returns vector with results of “not equal” operation on each component.
§impl<T, U> Vector3D<T, U>
impl<T, U> Vector3D<T, U>
pub fn cast<NewT>(self) -> Vector3D<NewT, U>where
NewT: NumCast,
pub fn cast<NewT>(self) -> Vector3D<NewT, U>where
NewT: NumCast,
Cast from one numeric representation to another, preserving the units.
When casting from floating vector to integer coordinates, the decimals are truncated
as one would expect from a simple cast, but this behavior does not always make sense
geometrically. Consider using round()
, ceil()
or floor()
before casting.
pub fn try_cast<NewT>(self) -> Option<Vector3D<NewT, U>>where
NewT: NumCast,
pub fn try_cast<NewT>(self) -> Option<Vector3D<NewT, U>>where
NewT: NumCast,
Fallible cast from one numeric representation to another, preserving the units.
When casting from floating vector to integer coordinates, the decimals are truncated
as one would expect from a simple cast, but this behavior does not always make sense
geometrically. Consider using round()
, ceil()
or floor()
before casting.
pub fn to_usize(self) -> Vector3D<usize, U>
pub fn to_usize(self) -> Vector3D<usize, U>
Cast into an usize
vector, truncating decimals if any.
When casting from floating vector vectors, it is worth considering whether
to round()
, ceil()
or floor()
before the cast in order to obtain
the desired conversion behavior.
pub fn to_u32(self) -> Vector3D<u32, U>
pub fn to_u32(self) -> Vector3D<u32, U>
Cast into an u32
vector, truncating decimals if any.
When casting from floating vector vectors, it is worth considering whether
to round()
, ceil()
or floor()
before the cast in order to obtain
the desired conversion behavior.
Trait Implementations§
§impl<T, U> AddAssign<Vector3D<T, U>> for Point3D<T, U>
impl<T, U> AddAssign<Vector3D<T, U>> for Point3D<T, U>
§fn add_assign(&mut self, other: Vector3D<T, U>)
fn add_assign(&mut self, other: Vector3D<T, U>)
+=
operation. Read more§impl<T, U> AddAssign for Vector3D<T, U>
impl<T, U> AddAssign for Vector3D<T, U>
§fn add_assign(&mut self, other: Vector3D<T, U>)
fn add_assign(&mut self, other: Vector3D<T, U>)
+=
operation. Read more§impl<T, U> ApproxEq<Vector3D<T, U>> for Vector3D<T, U>where
T: ApproxEq<T>,
impl<T, U> ApproxEq<Vector3D<T, U>> for Vector3D<T, U>where
T: ApproxEq<T>,
§fn approx_epsilon() -> Vector3D<T, U>
fn approx_epsilon() -> Vector3D<T, U>
§fn approx_eq_eps(&self, other: &Vector3D<T, U>, eps: &Vector3D<T, U>) -> bool
fn approx_eq_eps(&self, other: &Vector3D<T, U>, eps: &Vector3D<T, U>) -> bool
true
if this object is approximately equal to the other one, using
a provided epsilon value.§fn approx_eq(&self, other: &Self) -> bool
fn approx_eq(&self, other: &Self) -> bool
true
if this object is approximately equal to the other one, using
the approx_epsilon
epsilon value.§impl<T, U> Ceil for Vector3D<T, U>where
T: Ceil,
impl<T, U> Ceil for Vector3D<T, U>where
T: Ceil,
§fn ceil(self) -> Vector3D<T, U>
fn ceil(self) -> Vector3D<T, U>
See Vector3D::ceil
.
§impl<T, U> DivAssign<Scale<T, U, U>> for Vector3D<T, U>
impl<T, U> DivAssign<Scale<T, U, U>> for Vector3D<T, U>
§fn div_assign(&mut self, scale: Scale<T, U, U>)
fn div_assign(&mut self, scale: Scale<T, U, U>)
/=
operation. Read more§impl<T, U> DivAssign<T> for Vector3D<T, U>
impl<T, U> DivAssign<T> for Vector3D<T, U>
§fn div_assign(&mut self, scale: T)
fn div_assign(&mut self, scale: T)
/=
operation. Read more§impl<T, U> Floor for Vector3D<T, U>where
T: Floor,
impl<T, U> Floor for Vector3D<T, U>where
T: Floor,
§fn floor(self) -> Vector3D<T, U>
fn floor(self) -> Vector3D<T, U>
See Vector3D::floor
.
§impl<T, Src, Dst> From<Translation3D<T, Src, Dst>> for Vector3D<T, Src>
impl<T, Src, Dst> From<Translation3D<T, Src, Dst>> for Vector3D<T, Src>
§fn from(t: Translation3D<T, Src, Dst>) -> Vector3D<T, Src>
fn from(t: Translation3D<T, Src, Dst>) -> Vector3D<T, Src>
§impl<T, Src, Dst> From<Vector3D<T, Dst>> for RigidTransform3D<T, Src, Dst>
impl<T, Src, Dst> From<Vector3D<T, Dst>> for RigidTransform3D<T, Src, Dst>
§fn from(t: Vector3D<T, Dst>) -> RigidTransform3D<T, Src, Dst>
fn from(t: Vector3D<T, Dst>) -> RigidTransform3D<T, Src, Dst>
§impl<T, Src, Dst> From<Vector3D<T, Src>> for Translation3D<T, Src, Dst>
impl<T, Src, Dst> From<Vector3D<T, Src>> for Translation3D<T, Src, Dst>
§fn from(v: Vector3D<T, Src>) -> Translation3D<T, Src, Dst>
fn from(v: Vector3D<T, Src>) -> Translation3D<T, Src, Dst>
§impl<T, U> From<Vector3D<T, U>> for HomogeneousVector<T, U>where
T: Zero,
impl<T, U> From<Vector3D<T, U>> for HomogeneousVector<T, U>where
T: Zero,
§fn from(v: Vector3D<T, U>) -> HomogeneousVector<T, U>
fn from(v: Vector3D<T, U>) -> HomogeneousVector<T, U>
§impl<T, U> MulAssign<Scale<T, U, U>> for Vector3D<T, U>
impl<T, U> MulAssign<Scale<T, U, U>> for Vector3D<T, U>
§fn mul_assign(&mut self, scale: Scale<T, U, U>)
fn mul_assign(&mut self, scale: Scale<T, U, U>)
*=
operation. Read more§impl<T, U> MulAssign<T> for Vector3D<T, U>
impl<T, U> MulAssign<T> for Vector3D<T, U>
§fn mul_assign(&mut self, scale: T)
fn mul_assign(&mut self, scale: T)
*=
operation. Read more§impl<T, U> Round for Vector3D<T, U>where
T: Round,
impl<T, U> Round for Vector3D<T, U>where
T: Round,
§fn round(self) -> Vector3D<T, U>
fn round(self) -> Vector3D<T, U>
See Vector3D::round
.
§impl<T, U> SubAssign<Vector3D<T, U>> for Point3D<T, U>
impl<T, U> SubAssign<Vector3D<T, U>> for Point3D<T, U>
§fn sub_assign(&mut self, other: Vector3D<T, U>)
fn sub_assign(&mut self, other: Vector3D<T, U>)
-=
operation. Read more§impl<T, U> SubAssign for Vector3D<T, U>
impl<T, U> SubAssign for Vector3D<T, U>
§fn sub_assign(&mut self, other: Vector3D<T, U>)
fn sub_assign(&mut self, other: Vector3D<T, U>)
-=
operation. Read moreimpl<T, U> Copy for Vector3D<T, U>where
T: Copy,
impl<T, U> Eq for Vector3D<T, U>where
T: Eq,
Auto Trait Implementations§
impl<T, U> Freeze for Vector3D<T, U>where
T: Freeze,
impl<T, U> RefUnwindSafe for Vector3D<T, U>where
T: RefUnwindSafe,
U: RefUnwindSafe,
impl<T, U> Send for Vector3D<T, U>
impl<T, U> Sync for Vector3D<T, U>
impl<T, U> Unpin for Vector3D<T, U>
impl<T, U> UnwindSafe for Vector3D<T, U>where
T: UnwindSafe,
U: UnwindSafe,
Blanket Implementations§
Source§impl<S, D, Swp, Dwp, T> AdaptInto<D, Swp, Dwp, T> for Swhere
T: Real + Zero + Arithmetics + Clone,
Swp: WhitePoint<T>,
Dwp: WhitePoint<T>,
D: AdaptFrom<S, Swp, Dwp, T>,
impl<S, D, Swp, Dwp, T> AdaptInto<D, Swp, Dwp, T> for Swhere
T: Real + Zero + Arithmetics + Clone,
Swp: WhitePoint<T>,
Dwp: WhitePoint<T>,
D: AdaptFrom<S, Swp, Dwp, T>,
Source§fn adapt_into_using<M>(self, method: M) -> Dwhere
M: TransformMatrix<T>,
fn adapt_into_using<M>(self, method: M) -> Dwhere
M: TransformMatrix<T>,
Source§fn adapt_into(self) -> D
fn adapt_into(self) -> D
Source§impl<T, C> ArraysFrom<C> for Twhere
C: IntoArrays<T>,
impl<T, C> ArraysFrom<C> for Twhere
C: IntoArrays<T>,
Source§fn arrays_from(colors: C) -> T
fn arrays_from(colors: C) -> T
Source§impl<T, C> ArraysInto<C> for Twhere
C: FromArrays<T>,
impl<T, C> ArraysInto<C> for Twhere
C: FromArrays<T>,
Source§fn arrays_into(self) -> C
fn arrays_into(self) -> C
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<WpParam, T, U> Cam16IntoUnclamped<WpParam, T> for Uwhere
T: FromCam16Unclamped<WpParam, U>,
impl<WpParam, T, U> Cam16IntoUnclamped<WpParam, T> for Uwhere
T: FromCam16Unclamped<WpParam, U>,
Source§type Scalar = <T as FromCam16Unclamped<WpParam, U>>::Scalar
type Scalar = <T as FromCam16Unclamped<WpParam, U>>::Scalar
parameters
when converting.Source§fn cam16_into_unclamped(
self,
parameters: BakedParameters<WpParam, <U as Cam16IntoUnclamped<WpParam, T>>::Scalar>,
) -> T
fn cam16_into_unclamped( self, parameters: BakedParameters<WpParam, <U as Cam16IntoUnclamped<WpParam, T>>::Scalar>, ) -> T
self
into C
, using the provided parameters.Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T, C> ComponentsFrom<C> for Twhere
C: IntoComponents<T>,
impl<T, C> ComponentsFrom<C> for Twhere
C: IntoComponents<T>,
Source§fn components_from(colors: C) -> T
fn components_from(colors: C) -> T
§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
. Box<dyn Any>
can
then be further downcast
into Box<ConcreteType>
where ConcreteType
implements Trait
.§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
. Rc<Any>
can then be
further downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
.§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
&Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s.§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
&mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s.§impl<T> DowncastSync for T
impl<T> DowncastSync for T
§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
key
and return true
if they are equal.Source§impl<T> FromAngle<T> for T
impl<T> FromAngle<T> for T
Source§fn from_angle(angle: T) -> T
fn from_angle(angle: T) -> T
angle
.Source§impl<T, U> FromStimulus<U> for Twhere
U: IntoStimulus<T>,
impl<T, U> FromStimulus<U> for Twhere
U: IntoStimulus<T>,
Source§fn from_stimulus(other: U) -> T
fn from_stimulus(other: U) -> T
other
into Self
, while performing the appropriate scaling,
rounding and clamping.§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T, U> IntoAngle<U> for Twhere
U: FromAngle<T>,
impl<T, U> IntoAngle<U> for Twhere
U: FromAngle<T>,
Source§fn into_angle(self) -> U
fn into_angle(self) -> U
T
.Source§impl<WpParam, T, U> IntoCam16Unclamped<WpParam, T> for Uwhere
T: Cam16FromUnclamped<WpParam, U>,
impl<WpParam, T, U> IntoCam16Unclamped<WpParam, T> for Uwhere
T: Cam16FromUnclamped<WpParam, U>,
Source§type Scalar = <T as Cam16FromUnclamped<WpParam, U>>::Scalar
type Scalar = <T as Cam16FromUnclamped<WpParam, U>>::Scalar
parameters
when converting.Source§fn into_cam16_unclamped(
self,
parameters: BakedParameters<WpParam, <U as IntoCam16Unclamped<WpParam, T>>::Scalar>,
) -> T
fn into_cam16_unclamped( self, parameters: BakedParameters<WpParam, <U as IntoCam16Unclamped<WpParam, T>>::Scalar>, ) -> T
self
into C
, using the provided parameters.Source§impl<T, U> IntoColor<U> for Twhere
U: FromColor<T>,
impl<T, U> IntoColor<U> for Twhere
U: FromColor<T>,
Source§fn into_color(self) -> U
fn into_color(self) -> U
Source§impl<T, U> IntoColorUnclamped<U> for Twhere
U: FromColorUnclamped<T>,
impl<T, U> IntoColorUnclamped<U> for Twhere
U: FromColorUnclamped<T>,
Source§fn into_color_unclamped(self) -> U
fn into_color_unclamped(self) -> U
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> IntoStimulus<T> for T
impl<T> IntoStimulus<T> for T
Source§fn into_stimulus(self) -> T
fn into_stimulus(self) -> T
self
into T
, while performing the appropriate scaling,
rounding and clamping.§impl<T> NoneValue for Twhere
T: Default,
impl<T> NoneValue for Twhere
T: Default,
type NoneType = T
§fn null_value() -> T
fn null_value() -> T
§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<R, P> ReadPrimitive<R> for P
impl<R, P> ReadPrimitive<R> for P
Source§fn read_from_little_endian(read: &mut R) -> Result<Self, Error>
fn read_from_little_endian(read: &mut R) -> Result<Self, Error>
ReadEndian::read_from_little_endian()
.Source§impl<T, C> TryComponentsInto<C> for Twhere
C: TryFromComponents<T>,
impl<T, C> TryComponentsInto<C> for Twhere
C: TryFromComponents<T>,
Source§type Error = <C as TryFromComponents<T>>::Error
type Error = <C as TryFromComponents<T>>::Error
try_into_colors
fails to cast.Source§fn try_components_into(self) -> Result<C, <T as TryComponentsInto<C>>::Error>
fn try_components_into(self) -> Result<C, <T as TryComponentsInto<C>>::Error>
Source§impl<T, U> TryIntoColor<U> for Twhere
U: TryFromColor<T>,
impl<T, U> TryIntoColor<U> for Twhere
U: TryFromColor<T>,
Source§fn try_into_color(self) -> Result<U, OutOfBounds<U>>
fn try_into_color(self) -> Result<U, OutOfBounds<U>>
OutOfBounds
error is returned which contains
the unclamped color. Read more