pub struct Subscription<T> { /* private fields */ }
Expand description
A request to listen to external events.
Besides performing async actions on demand with Task
, most
applications also need to listen to external events passively.
A Subscription
is normally provided to some runtime, like a Task
,
and it will generate events as long as the user keeps requesting it.
For instance, you can use a Subscription
to listen to a WebSocket
connection, keyboard presses, mouse events, time ticks, etc.
§The Lifetime of a Subscription
Much like a Future
or a [Stream
], a Subscription
does not produce any effects
on its own. For a Subscription
to run, it must be returned to the iced runtime—normally
in the subscription
function of an application
or a daemon
.
When a Subscription
is provided to the runtime for the first time, the runtime will
start running it asynchronously. Running a Subscription
consists in building its underlying
[Stream
] and executing it in an async runtime.
Therefore, you can think of a Subscription
as a “stream builder”. It simply represents a way
to build a certain [Stream
] together with some way to identify it.
Identification is important because when a specific Subscription
stops being returned to the
iced runtime, the runtime will kill its associated [Stream
]. The runtime uses the identity of a
Subscription
to keep track of it.
This way, iced allows you to declaratively subscribe to particular streams of data temporarily and whenever necessary.
use iced::time::{self, Duration, Instant};
use iced::Subscription;
struct State {
timer_enabled: bool,
}
fn subscription(state: &State) -> Subscription<Instant> {
if state.timer_enabled {
time::every(Duration::from_secs(1))
} else {
Subscription::none()
}
}
Implementations§
Source§impl<T> Subscription<T>
impl<T> Subscription<T>
Sourcepub fn none() -> Self
pub fn none() -> Self
Returns an empty Subscription
that will not produce any output.
Sourcepub fn run<S>(builder: fn() -> S) -> Selfwhere
S: Stream<Item = T> + MaybeSend + 'static,
T: 'static,
pub fn run<S>(builder: fn() -> S) -> Selfwhere
S: Stream<Item = T> + MaybeSend + 'static,
T: 'static,
Returns a Subscription
that will call the given function to create and
asynchronously run the given [Stream
].
§Creating an asynchronous worker with bidirectional communication
You can leverage this helper to create a Subscription
that spawns
an asynchronous worker in the background and establish a channel of
communication with an iced
application.
You can achieve this by creating an mpsc
channel inside the closure
and returning the Sender
as a Message
for the Application
:
use iced::futures::channel::mpsc;
use iced::futures::sink::SinkExt;
use iced::futures::Stream;
use iced::stream;
use iced::Subscription;
pub enum Event {
Ready(mpsc::Sender<Input>),
WorkFinished,
// ...
}
enum Input {
DoSomeWork,
// ...
}
fn some_worker() -> impl Stream<Item = Event> {
stream::channel(100, async |mut output| {
// Create channel
let (sender, mut receiver) = mpsc::channel(100);
// Send the sender back to the application
output.send(Event::Ready(sender)).await;
loop {
use iced_futures::futures::StreamExt;
// Read next input sent from `Application`
let input = receiver.select_next_some().await;
match input {
Input::DoSomeWork => {
// Do some async work...
// Finally, we can optionally produce a message to tell the
// `Application` the work is done
output.send(Event::WorkFinished).await;
}
}
}
})
}
fn subscription() -> Subscription<Event> {
Subscription::run(some_worker)
}
Check out the websocket
example, which showcases this pattern to maintain a WebSocket
connection open.
Sourcepub fn run_with<D, S>(data: D, builder: fn(&D) -> S) -> Self
pub fn run_with<D, S>(data: D, builder: fn(&D) -> S) -> Self
Returns a Subscription
that will create and asynchronously run the
given [Stream
].
Both the data
and the function pointer will be used to uniquely identify
the Subscription
.
Sourcepub fn batch(subscriptions: impl IntoIterator<Item = Subscription<T>>) -> Self
pub fn batch(subscriptions: impl IntoIterator<Item = Subscription<T>>) -> Self
Batches all the provided subscriptions and returns the resulting
Subscription
.
Sourcepub fn with<A>(self, value: A) -> Subscription<(A, T)>
pub fn with<A>(self, value: A) -> Subscription<(A, T)>
Adds a value to the Subscription
context.
The value will be part of the identity of a Subscription
.
Sourcepub fn map<F, A>(self, f: F) -> Subscription<A>
pub fn map<F, A>(self, f: F) -> Subscription<A>
Transforms the Subscription
output with the given function.
§Panics
The closure provided must be a non-capturing closure. The method will panic in debug mode otherwise.