iced_test/lib.rs
1//! Test your `iced` applications in headless mode.
2//!
3//! # Basic Usage
4//! Let's assume we want to test [the classical counter interface].
5//!
6//! First, we will want to create a [`Simulator`] of our interface:
7//!
8//! ```rust,no_run
9//! # struct Counter { value: i64 }
10//! # impl Counter {
11//! # pub fn view(&self) -> iced_runtime::core::Element<(), iced_runtime::core::Theme, iced_renderer::Renderer> { unimplemented!() }
12//! # }
13//! use iced_test::simulator;
14//!
15//! let mut counter = Counter { value: 0 };
16//! let mut ui = simulator(counter.view());
17//! ```
18//!
19//! Now we can simulate a user interacting with our interface. Let's use [`Simulator::click`] to click
20//! the counter buttons:
21//!
22//! ```rust,no_run
23//! # struct Counter { value: i64 }
24//! # impl Counter {
25//! # pub fn view(&self) -> iced_runtime::core::Element<(), iced_runtime::core::Theme, iced_renderer::Renderer> { unimplemented!() }
26//! # }
27//! # use iced_test::simulator;
28//! #
29//! # let mut counter = Counter { value: 0 };
30//! # let mut ui = simulator(counter.view());
31//! #
32//! let _ = ui.click("+");
33//! let _ = ui.click("+");
34//! let _ = ui.click("-");
35//! ```
36//!
37//! [`Simulator::click`] takes a type implementing the [`Selector`] trait. A [`Selector`] describes a way to query the widgets of an interface.
38//! In this case, we leverage the [`Selector`] implementation of `&str`, which selects a widget by the text it contains.
39//!
40//! We can now process any messages produced by these interactions and then assert that the final value of our counter is
41//! indeed `1`!
42//!
43//! ```rust,no_run
44//! # struct Counter { value: i64 }
45//! # impl Counter {
46//! # pub fn update(&mut self, message: ()) {}
47//! # pub fn view(&self) -> iced_runtime::core::Element<(), iced_runtime::core::Theme, iced_renderer::Renderer> { unimplemented!() }
48//! # }
49//! # use iced_test::simulator;
50//! #
51//! # let mut counter = Counter { value: 0 };
52//! # let mut ui = simulator(counter.view());
53//! #
54//! # let _ = ui.click("+");
55//! # let _ = ui.click("+");
56//! # let _ = ui.click("-");
57//! #
58//! for message in ui.into_messages() {
59//! counter.update(message);
60//! }
61//!
62//! assert_eq!(counter.value, 1);
63//! ```
64//!
65//! We can even rebuild the interface to make sure the counter _displays_ the proper value with [`Simulator::find`]:
66//!
67//! ```rust,no_run
68//! # struct Counter { value: i64 }
69//! # impl Counter {
70//! # pub fn view(&self) -> iced_runtime::core::Element<(), iced_runtime::core::Theme, iced_renderer::Renderer> { unimplemented!() }
71//! # }
72//! # use iced_test::simulator;
73//! #
74//! # let mut counter = Counter { value: 0 };
75//! let mut ui = simulator(counter.view());
76//!
77//! assert!(ui.find("1").is_ok(), "Counter should display 1!");
78//! ```
79//!
80//! And that's it! That's the gist of testing `iced` applications!
81//!
82//! [`Simulator`] contains additional operations you can use to simulate more interactions—like [`tap_key`](Simulator::tap_key) or
83//! [`typewrite`](Simulator::typewrite)—and even perform [_snapshot testing_](Simulator::snapshot)!
84//!
85//! [the classical counter interface]: https://book.iced.rs/architecture.html#dissecting-an-interface
86pub use iced_program as program;
87pub use iced_renderer as renderer;
88pub use iced_runtime as runtime;
89pub use iced_runtime::core;
90
91pub use iced_selector as selector;
92
93pub mod emulator;
94pub mod ice;
95pub mod instruction;
96pub mod simulator;
97
98mod error;
99
100pub use emulator::Emulator;
101pub use error::Error;
102pub use ice::Ice;
103pub use instruction::Instruction;
104pub use selector::Selector;
105pub use simulator::{Simulator, simulator};
106
107use crate::core::Size;
108use crate::core::time::{Duration, Instant};
109use crate::core::window;
110
111use std::path::Path;
112
113/// Runs an [`Ice`] test suite for the given [`Program`](program::Program).
114///
115/// Any `.ice` tests will be parsed from the given directory and executed in
116/// an [`Emulator`] of the given [`Program`](program::Program).
117///
118/// Remember that an [`Emulator`] executes the real thing! Side effects _will_
119/// take place. It is up to you to ensure your tests have reproducible environments
120/// by leveraging [`Preset`][program::Preset].
121pub fn run(
122 program: impl program::Program + 'static,
123 tests_dir: impl AsRef<Path>,
124) -> Result<(), Error> {
125 use crate::runtime::futures::futures::StreamExt;
126 use crate::runtime::futures::futures::channel::mpsc;
127 use crate::runtime::futures::futures::executor;
128
129 use std::ffi::OsStr;
130 use std::fs;
131
132 let files = fs::read_dir(tests_dir)?;
133 let mut tests = Vec::new();
134
135 for file in files {
136 let file = file?;
137
138 if file.path().extension().and_then(OsStr::to_str) != Some("ice") {
139 continue;
140 }
141
142 let content = fs::read_to_string(file.path())?;
143
144 match Ice::parse(&content) {
145 Ok(ice) => {
146 let preset = if let Some(preset) = &ice.preset {
147 let Some(preset) = program
148 .presets()
149 .iter()
150 .find(|candidate| candidate.name() == preset)
151 else {
152 return Err(Error::PresetNotFound {
153 name: preset.to_owned(),
154 available: program
155 .presets()
156 .iter()
157 .map(program::Preset::name)
158 .map(str::to_owned)
159 .collect(),
160 });
161 };
162
163 Some(preset)
164 } else {
165 None
166 };
167
168 tests.push((file, ice, preset));
169 }
170 Err(error) => {
171 return Err(Error::IceParsingFailed {
172 file: file.path().to_path_buf(),
173 error,
174 });
175 }
176 }
177 }
178
179 // TODO: Concurrent runtimes
180 for (file, ice, preset) in tests {
181 let (sender, mut receiver) = mpsc::channel(1);
182
183 let mut emulator = Emulator::with_preset(
184 sender,
185 &program,
186 ice.mode,
187 ice.viewport,
188 preset,
189 );
190
191 let mut instructions = ice.instructions.into_iter();
192
193 loop {
194 let event = executor::block_on(receiver.next())
195 .expect("emulator runtime should never stop on its own");
196
197 match event {
198 emulator::Event::Action(action) => {
199 emulator.perform(&program, action);
200 }
201 emulator::Event::Failed(instruction) => {
202 return Err(Error::IceTestingFailed {
203 file: file.path().to_path_buf(),
204 instruction,
205 });
206 }
207 emulator::Event::Ready => {
208 let Some(instruction) = instructions.next() else {
209 break;
210 };
211
212 emulator.run(&program, instruction);
213 }
214 }
215 }
216 }
217
218 Ok(())
219}
220
221/// Takes a screenshot of the given [`Program`](program::Program) with the given theme, viewport,
222/// and scale factor after running it for the given [`Duration`].
223pub fn screenshot<P: program::Program + 'static>(
224 program: &P,
225 theme: &P::Theme,
226 viewport: impl Into<Size>,
227 scale_factor: f32,
228 duration: Duration,
229) -> window::Screenshot {
230 use crate::runtime::futures::futures::channel::mpsc;
231
232 let (sender, mut receiver) = mpsc::channel(100);
233
234 let mut emulator = Emulator::new(
235 sender,
236 program,
237 emulator::Mode::Immediate,
238 viewport.into(),
239 );
240
241 let start = Instant::now();
242
243 loop {
244 if let Some(event) = receiver.try_next().ok().flatten() {
245 match event {
246 emulator::Event::Action(action) => {
247 emulator.perform(program, action);
248 }
249 emulator::Event::Failed(_) => {
250 unreachable!(
251 "no instructions should be executed during a screenshot"
252 );
253 }
254 emulator::Event::Ready => {}
255 }
256 }
257
258 if start.elapsed() >= duration {
259 break;
260 }
261
262 std::thread::sleep(Duration::from_millis(1));
263 }
264
265 emulator.screenshot(program, theme, scale_factor)
266}